Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.
LG a
LG a
Chứng minh tam giác ABC có ba góc nhọn.
Lời giải chi tiết:
Đặt a = OA, b = OB, c = OC. Ta có:
\(AB = \sqrt {{a^2} + {b^2}} ,BC = \sqrt {{b^2} + {c^2}} ,\) \(AC = \sqrt {{a^2} + {c^2}} \)
Áp dụng định lí cosin trong tam giác ABC ta có :
\(\cos A = {{A{B^2} + A{C^2} - B{C^2}} \over {2AB.AC}} \) \( = {{{a^2} + {b^2} + {a^2} + {c^2} - {b^2} - {c^2}} \over {2AB.AC}} = {{2{a^2}} \over {2AB.AC}} > 0\)
⇒ A nhọn. Tương tự B, C là các góc nhọn.
Vậy ΔABC có ba góc nhọn.
LG b
LG b
Chứng minh rằng hình chiếu H của điểm O trên mp(ABC) trùng với trực tâm tam giác ABC.
Lời giải chi tiết:
LG c
LG c
Chứng minh rằng \({1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)
Lời giải chi tiết:
Unit 3: Social issues
Chủ đề 3. Điện trường
Chủ đề 7: Quyền bình đẳng của công dân
Chủ đề 2. Quản lí bản thân
Review (Units 1 - 4)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11