Đề bài
Cho dãy số (un) xác định bởi
\(\displaystyle {u_1} = 1\,\text{ và }\,{u_{n + 1}} = {2 \over {u_n^2 + 1}}\) với mọi \(\displaystyle n ≥ 1\)
Chứng minh rằng (un) là một dãy số không đổi (dãy có tất cả các số hạng đều bằng nhau).
Phương pháp giải - Xem chi tiết
- Tính một vài số hạng đầu, nhận xét các số hạng của dãy.
- Chứng minh nhận xét bằng phương pháp quy nạp.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}
{u_1} = 1\\
{u_2} = \frac{2}{{u_1^2 + 1}} = \frac{2}{{{1^2} + 1}} = 1\\
{u_3} = \frac{2}{{u_2^2 + 1}} = \frac{2}{{{1^2} + 1}} = 1\\
...
\end{array}\)
Do đó, dự đoán \(\displaystyle u_n= 1\) (1) \(\displaystyle ∀ n \in \mathbb N^*\).
Ta chứng minh bằng qui nạp như sau:
+) Rõ ràng (1) đúng với \(\displaystyle n = 1\)
+) Giả sử (1) đúng với \(\displaystyle n = k\), tức là ta có \(\displaystyle u_k = 1\)
+) Ta chứng minh (1) đúng với \(\displaystyle n = k + 1\).
Thật vậy theo công thức truy hồi và giả thiết quy nạp ta có :
\(\displaystyle {u_{k + 1}} = {2 \over {u_k^2 + 1}} = {2 \over {1^2 + 1}}=1\)
Vậy (1) đúng với \(\displaystyle n = k + 1\), do đó (1) đúng với mọi \(\displaystyle n \in \mathbb N^*\)
Đề kiểm tra giữa kì 1
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 11
Unit 1: Health & Healthy lifestyle
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 11
Unit 9: Education in the Future
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11