Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Đề bài
Với các giá trị nào của a, hàm số
\(f(x) =- {1 \over 3}{x^3} + 2{x^2} + (2a + 1)x - 3a + 2\)
nghịch biến trên \(\mathbb R\) ?
Lời giải chi tiết
Ta có: \(f'(x) = - {x^2} + 4x + 2a + 1\)
\(\Delta ' = 2a - 5;\Delta ' = 0 \Leftrightarrow a = - {5 \over 2}\)
+) Nếu \(a =- {5 \over 2}\) thì \(f'(x) = - {(x - 2)^2} \le 0\) với mọi \(x\in \mathbb R\), \(f'(x)=0\) chỉ tại điểm x = 2. Do đó hàm số nghịch biến trên \(\mathbb R\)
+) Nếu \(\Delta ' < 0\) thì phương trình \(f'(x) = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) (giả sử \({x_1} < {x_2}\)). Dễ thấy hàm số f đồng biến trên khoảng \(\left( {{x_1},{x_2}} \right)\). Điều kiện đòi hỏi không được thỏa mãn.
+) Nếu \(\Delta ' < 0\), tức là \(a < - {5 \over 2}\) thì \(f(x) < 0\) với mọi \(x\in \mathbb R\). Do đó hàm số nghịch biến trên \(\mathbb R\)
Vậy hàm số nghịch biến trên \(\mathbb R\) khi và chỉ khi \(a \le - {5 \over 2}\)
Đề kiểm tra giữa học kì 1
Unit 7: Economic Reforms - Cải Cách Kinh Tế
Đề khảo sát chất lượng đầu năm
CHƯƠNG 5. ĐẠI CƯƠNG VỀ KIM LOẠI
Unit 5. Cultural Identity