ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 2 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Xét tính chẵn – lẻ của hàm số sau:

a. \(y = -2\sin x\)

b. \(y = 3\sin x – 2\)

c. \(y=\sin x – \cos x\)

d. \(y = \sin x\cos^2 x+ \tan x\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

LG a

\(y = -2\sin x\)

Phương pháp giải:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(D\).

+) Nếu \(x \in D \Rightarrow  - x \in D\) và \(f\left( { - x} \right) =  - f\left( x \right)\) thì hàm số là hàm số lẻ.

+) Nếu \(x \in D \Rightarrow  - x \in D\) và \(f\left( { - x} \right) = f\left( x \right)\) thì hàm số là hàm số chẵn.

Lời giải chi tiết:

\(f(x) = -2\sin x\)

Tập xác định \(D =\mathbb R\), ta có:

\(f(-x) = -2\sin (-x)\)\( =  - 2\left( { - \sin x} \right) = 2\sin x\)\( = -f(x), ∀x \in\mathbb R\)

Vậy \(y = -2\sin x\) là hàm số lẻ.

LG b

LG b

\(y = 3\sin x – 2\)

Phương pháp giải:

Lấy ví dụ kiểm tra, thay \(x = \frac{\pi }{2}, - x =  - \frac{\pi }{2}\) kiểm tra giá trị của hàm số tại các điểm này và so sánh.

Lời giải chi tiết:

\(f(x) = 3\sin x – 2\)

Ta có: \(f\left( {{\pi \over 2}} \right)  = 3\sin \frac{\pi }{2} - 2= 1;\)

\(f\left( { - {\pi \over 2}} \right) = 3\sin (-\frac{\pi }{2}) - 2= - 5\)

\(f\left( { - {\pi \over 2}} \right) \ne - f\left( { - {\pi \over 2}} \right)\) và \(f\left( { - {\pi \over 2}} \right) \ne f\left( {{\pi \over 2}} \right)\) nên hàm số \(y = 3\sin x – 2\) không phải là hàm số chẵn cũng không phải là hàm số lẻ.

LG c

LG c

\(y=\sin x – \cos x\)

Lời giải chi tiết:

\(f(x) = \sin x – \cos x\)

Ta có:  \(f\left( {{\pi \over 4}} \right) = 0;f\left( { - {\pi \over 4}} \right) = - \sqrt 2 \)

\(f\left( { - {\pi \over 4}} \right) \ne - f\left( {{\pi \over 4}} \right)\) và \(f\left( { - {\pi \over 4}} \right) \ne f\left( {{\pi \over 4}} \right)\) nên \(y = \sin x – \cos x\) không phải là hàm số lẻ cũng không phải là hàm số chẵn.

LG d

LG d

\(y = \sin x\cos^2 x+ \tan x\)

Lời giải chi tiết:

\(f\left( x \right) = \sin x{\cos ^2}x + \tan x\)

Tập xác định \(D = \mathbb R \backslash  \left\{{\pi \over 2} + k\pi ,k \in \mathbb Z \right\}\)

\(∀x \in D\) ta có \(– x \in D\) và  

\(\eqalign{
& f\left( { - x} \right) \cr&= \sin \left( { - x} \right){\cos ^2}\left( { - x} \right) + \tan \left( { - x} \right) \cr 
& = - \sin x{\cos ^2}x - \tan x\cr& =  - \left( {\sin x{{\cos }^2}x + \tan x} \right) = - f\left( x \right) \cr} \)

Do đó hàm số đã cho là hàm số lẻ.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved