Đề bài
Chứng minh rằng phương trình \({x^3} + a{x^2} + bx + c = 0\) luôn có ít nhất một nghiệm.
Lời giải chi tiết
Đặt \(f(x)={x^3} + a{x^2} + bx + c = 0\)
Do \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - \infty \) nên có số \(α < 0\) sao cho \(f(α) < 0\).
Do \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \) nên có số \(β > 0\) sao cho \(f(β) > 0\).
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) liên tục trên \(\mathbb R\) chứa đoạn \(\left[ {\alpha ;\beta } \right]\) nên theo định lý về giá trị trung gian của hàm số liên tục, tồn tại số \(d \in \left[ {\alpha ;\beta } \right]\) sao cho \(f(d) = 0\). Đó chính là nghiệm của phương trình \(f(x) = 0\).
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Chương 3. Quá trình giành độc lập của các quốc gia ở Đông Nam Á
Ngữ pháp
Projects 1-4: Presentation/Performance
Unit 10: Cities of the Future
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11