GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Câu 2.110 trang 88 sách bài tập Giải tích 12 Nâng cao

Đề bài

Giải phương trình sau:

                  \(2{\log _3}\cot x = {\log _2}\cos x\)

Lời giải chi tiết

\(x = {\pi  \over 3} + k2\pi \left( {k \in Z} \right)\)

Hướng dẫn: Điều kiện \({\rm{cos }}x > 0,\sin x > 0\)

Đặt \({\log _2}\cos x = t = {\log _3}{\cot ^2}x\), ta có \(\left\{ \matrix{{\cot ^2}x = {3^t} \hfill \cr{\rm{cos }}x = {2^t} \hfill \cr}  \right.\)

Do \({\cot ^2}x = {{{\rm{co}}{{\rm{s}}^2}x} \over {1 - {\rm{co}}{{\rm{s}}^2}x}}\) nên dẫn đến \({{{{\left( {{2^t}} \right)}^2}} \over {1 - {{\left( {{2^t}} \right)}^2}}} = {3^t}\) hay \({4^t} + {12^t} = {3^t}\)

Chia cả 2 vế cho \(4^t\) rồi sử dụng tính đồng biến, nghịch biến của hàm số mũ, ta thấy vế trái đồng biến, vế phải nghịch biến nên phương trình có nghiệm duy nhất \(t =  - 1\)

Do đó \({\rm{cos }}x = {1 \over 2} \Leftrightarrow x =  \pm {\pi  \over 3} + k2\pi \left( {k \in Z} \right)\)

Với điều kiện \(\cos x > 0,\sin x > 0\), chỉ có nghiệm  \(x = {\pi  \over 3} + k2\pi \left( {k \in Z} \right)\) là thích hợp.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved