Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Đề bài
Giải phương trình sau:
\(2{\log _3}\cot x = {\log _2}\cos x\)
Lời giải chi tiết
\(x = {\pi \over 3} + k2\pi \left( {k \in Z} \right)\)
Hướng dẫn: Điều kiện \({\rm{cos }}x > 0,\sin x > 0\)
Đặt \({\log _2}\cos x = t = {\log _3}{\cot ^2}x\), ta có \(\left\{ \matrix{{\cot ^2}x = {3^t} \hfill \cr{\rm{cos }}x = {2^t} \hfill \cr} \right.\)
Do \({\cot ^2}x = {{{\rm{co}}{{\rm{s}}^2}x} \over {1 - {\rm{co}}{{\rm{s}}^2}x}}\) nên dẫn đến \({{{{\left( {{2^t}} \right)}^2}} \over {1 - {{\left( {{2^t}} \right)}^2}}} = {3^t}\) hay \({4^t} + {12^t} = {3^t}\)
Chia cả 2 vế cho \(4^t\) rồi sử dụng tính đồng biến, nghịch biến của hàm số mũ, ta thấy vế trái đồng biến, vế phải nghịch biến nên phương trình có nghiệm duy nhất \(t = - 1\)
Do đó \({\rm{cos }}x = {1 \over 2} \Leftrightarrow x = \pm {\pi \over 3} + k2\pi \left( {k \in Z} \right)\)
Với điều kiện \(\cos x > 0,\sin x > 0\), chỉ có nghiệm \(x = {\pi \over 3} + k2\pi \left( {k \in Z} \right)\) là thích hợp.
Bài 41. Vấn đề sử dụng hợp lí và cải tạo tự nhiên ở Đồng bằng sông Cửu Long
Đề kiểm tra học kì 2
Unit 6. Endangered Species
SOẠN VĂN 12 TẬP 2
Đề kiểm tra 15 phút