Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Giải các hệ phương trình sau
LG a
\(\left\{ \matrix{ {4^{{{\log }_3}xy}} = 2 + {\left( {xy} \right)^{{{\log }_3}2}} \hfill \cr {x^2} + {y^2} - 3x - 3y = 12 \hfill \cr} \right.\)
Lời giải chi tiết:
\(\left( {x;y} \right)\) là \(\left( {3 - \sqrt 6 ;3 + \sqrt 6 } \right),\left( {3 + \sqrt 6 ;3 - \sqrt 6 } \right)\)
ĐKXĐ: \(xy > 0\)
Áp dụng công thức \({a^{{{\log }_c}b}} = {b^{{{\log }_c}a}}\) , phương trình đầu của hệ có thể viết thành
\({\left( {{2^2}} \right)^{{{\log }_3}xy}} = 2 + {2^{{{\log }_3}xy}}\)
Đặt \(t = {2^{{{\log }_3}xy}}\left( {t > 0} \right)\) ta có \({t^2} = 2 + t\). Giải phương trình ta tìm được \(t = - 1\) (loại) và \(t = 2\). Từ đó \({\log _3}xy = 1\) hay \(xy = 3\)
Biến đổi phương trình thứ hai của hệ thành
\({\left( {x + y} \right)^2} - 3\left( {x + y} \right) - 18 = 0\)
Giải ra, ta được \(x + y = 6\) và \(x + y = - 3\)
Như vậy, ta có hai hệ phương trình
\(\left\{ \matrix{ x + y = 6 \hfill \cr xy = 3 \hfill \cr} \right.\) và \(\left\{ \matrix{ x + y = - 3 \hfill \cr xy = 3 \hfill \cr} \right.\)
Vậy \(\left( {x;y} \right)\) là \(\left( {3 - \sqrt 6 ;3 + \sqrt 6 } \right),\left( {3 + \sqrt 6 ;3 - \sqrt 6 } \right)\)
LG b
\(\left\{ \matrix{ y = 1 + {\log _2}x \hfill \cr{x^y} = 64 \hfill \cr} \right.\)
Lời giải chi tiết:
Thế y từ phương trình đầu vào phương trình thứ hai rồi lấy lôgarit cơ số 2 cả hai vế.
\(\eqalign{
& \left( {1 + {{\log }_2}x} \right){\log _2}x = 6\cr
& \Leftrightarrow \log _2^2x + {\log _2}x - 6 = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 2 \hfill \cr
{\log _2}x = - 3 \hfill \cr} \right. \cr
&\Leftrightarrow \left[ \matrix{
x = 4 \Rightarrow y = 3 \hfill \cr
x = {1 \over 8} \Rightarrow y = - 2 \hfill \cr} \right. \cr} \)
Vậy nghiệm của hệ là: \(\left( {4;3} \right),\left( {{1 \over 8}; - 2} \right)\)
Unit 4. School Education System
CHƯƠNG II. DAO ĐỘNG CƠ
Unit 3. The Green Movement
Tải 10 đề kiểm tra 15 phút - Chương 6 – Hóa học 12
Đề kiểm tra giữa học kì 1