Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Giải các bất phương trình
LG a
\({9^x} < {3^{x + 1}} + 4\)
Lời giải chi tiết:
Đặt \({3^x} = t\left( {t > 0} \right)\), ta có \({t^2} < 3t + 4\)
Vậy \(x > {\log _3}4\)
LG b
\({3^x} - {3^{ - x + 2}} + 8 > 0\)
Lời giải chi tiết:
\(x > 0\)
Hướng dẫn: Đặt \({3^x} = t\left( {t > 0} \right)\), ta có \({t^2} + 8t - 9 > 0\)
LG c
\({x^{{{\log }_3}x + 4}} < 243\)
Lời giải chi tiết:
\({1 \over {243}} < x < 3\)
Hướng dẫn: Lôgarit cơ số 3 cả hai vế của bất phương trình, ta có
\(\left( {{{\log }_3}x + 4} \right){\log _3}x < 5\)
Đặt \({\log _3}x = t\) , ta được \({t^2} + 4t - 5 < 0\) hay \( - 5 < t < 1\)
Do \( - 5 < {\log _3}x < 1\). Suy ra \({3^{ - 5}} < x < 3\)
LG d
\(\log _2^2x + {\log _2}4x - 4 \ge 0\)
Lời giải chi tiết:
\(x \le {1 \over 4}\) hoặc \(x \ge 2\)
Hướng dẫn: Đặt \({\log _2}x = t\) , ta có \({t^2} + t - 2 \ge 0\)
Tải 5 đề kiểm tra 45 phút - Chương 5 – Hóa học 12
GIẢI TÍCH SBT - TOÁN 12
Bài 5. Lịch sử hình thành và phát triển lãnh thổ (tiếp theo)
Bài 30. Vấn đề phát triển ngành giao thông vận tải và thông tin liên lạc
Bài 39. Vấn đề khai thác lãnh thổ theo chiều sâu ở Đông Nam Bộ