Bài 22 trang 8 SBT Hình Học 11 nâng cao

Đề bài

Cho hai tam giác bằng nhau ABC và A’B’C’ \(\left( {AB = A'B',BC = B'C',AC = A'C'} \right)\)

Chứng minh rằng chỉ cần tối đa ba phép đối xứng trục để hợp thành của chúng biến tam giác ABC thành tam giác A’B’C’.

Lời giải chi tiết

Theo bài toán trên ta có hai phép đối xứng trục \({D_1}\) và \({D_2}\) mà hợp thành của chúng biến A thành A’ và biến B thành B’.

Phép hợp thành đó là phép dời hình nên nó biến điểm C thành điểm \(C_1\) sao cho hai tam giác ABC và \(A'B'{C_1}\) bằng nhau.

Vậy \({C_1}\) phải trùng C’ hoặc đối xứng với C’ qua đường thẳng A’B’.

Nếu \({C_1}\) trùng với C’ thì phép hợp thành nói trên là phép cần tìm.

Nếu \({C_1}\) khác với C’ thì vì hai tam giác \(A'B'{C_1}\) và A’B’C’ bằng nhau nên phép đối xứng \({Đ_c}\) với c là đường thẳng A’B’ sẽ biến tam giác \(A'B'{C_1}\) thành tam giác A‘B’C’.

Vậy hợp thành của ba phép \({Đ_a},\,{Đ_b}\) và \({Đ_c}\) là phép dời hình cần tìm.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved