Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Cho số phức \({\rm{w}} = \bar z{{1 - 3i} \over {1 + 2i}},\) trong đó \(z = \cos \varphi + i\sin \varphi ,\left( {\varphi \in R} \right)\)
LG a
Hãy viết số phức w dưới dạng lượng giác.
Lời giải chi tiết:
Ta có \(\bar z = \cos \varphi - i\sin \varphi = \cos \left( { - \varphi } \right) + i\sin \left( { - \varphi } \right),\)
\({{1 - 3i} \over {1 + 2i}} = - \left( {1 + i} \right) = \sqrt 2 \left( {\cos {{5\pi } \over 4} + i\sin {{5\pi } \over 4}} \right)\)
Vậy \({\rm{w}} = \bar z{{1 - 3i} \over {1 + 2i}} = \sqrt 2 \left[ {\cos \left( {{{5\pi } \over 4} - \varphi } \right) + i\sin \left( {{{5\pi } \over 4} - \varphi } \right)} \right]\)
LG b
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức w nói trên khi \(\varphi \)) thay đổi, \(0 \le \varphi \le \pi \)
Lời giải chi tiết:
Do \(0 \le \varphi \le \pi \) nên \({\pi \over 4} \le {{5\pi } \over 4} - \varphi \le {{5\pi } \over 4}.\)
Vậy tập hợp cần tìm là nửa đường tròn tâm O, bán kính bằng \(\sqrt 2 \), nằm phía trên đường phân giác của góc phần tư thứ nhất của hệ tọa độ. (h.3)
ĐỀ KIỂM TRA HỌC KÌ 1 (ĐỀ THI HỌC KÌ 1) - ĐỊA LÍ 12
CHƯƠNG I. DAO ĐỘNG CƠ
PHẦN MỘT. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NĂM 2000
Chương 8: Phân biệt một số chất vô cơ
Unit 10. Lifelong Learning