ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 24 trang 31 SGK Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Giả sử một con tàu vũ trụ được phóng lên từ mũi Ca-na-vơ-ran (Canaveral) ở Mĩ. Nó chuyển động theo một quỹ đạo được mô tả trên một bản đồ phẳng (quanh đường xích đạo) của mặt đất như hình 1.23 : điểm \(M\) mô tả cho con tàu, đường thẳng \(∆\) mô tả cho đường xích đạo.

Khoảng cách \(h\) (kilomet) từ \(M\) đến \(∆\) được tính theo công thức \(h = |d|\), trong đó

\(d = 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right],\)

Với \(t\) (phút) là thời gian trôi qua kể từ khi con tàu đi vào quỹ đạo, \(d > 0\) nếu \(M\) ở phía trên \(∆\), \(d < 0\) nếu \(M\) ở phía dưới \(∆\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

Giả thiết rằng con tàu đi vào quỹ đạo ngay từ khi phóng lên tại mũi Ca-na-vơ-ran (tức là ứng với \(t = 0\)). Hãy tính khoảng cách từ điểm \(C\) đến đường thẳng \(∆\), trong đó \(C\) là điểm trên bản đồ biểu diễn cho mũi Ca-na-vơ-ran.

Lời giải chi tiết:

Vì \(t = 0\) nên \(d = 4000\cos \left( { - {{10\pi } \over {45}}} \right) = 4000\cos {{2\pi } \over 9}.\)

Do đó :

\(h = |d| ≈ 3064,178 (km)\)

LG b

LG b

Tìm thời điểm sớm nhất sau khi con tàu đi vào quỹ đạo để có \(d = 2000\).

Lời giải chi tiết:

\(\eqalign{& d = 2000 \cr&\Leftrightarrow 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = 2000\cr&\Leftrightarrow \cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = {1 \over 2} \cr & \Leftrightarrow {\pi \over {45}}\left( {t - 10} \right) = \pm {\pi \over 3} + k2\pi \cr&\Leftrightarrow t = 10 \pm 15 + 90k \cr&\Leftrightarrow \left[ {\matrix{{t = 25 + 90k} \cr {t = - 5 + 90k} \cr} } \right. \cr} \) 

Chú ý rằng \(t > 0\) ta thấy ngay giá trị nhỏ nhất của \(t\) là \(t = 25\).

Vậy \(d = 2000 (km)\) xảy ra lần đầu tiên sau khi phóng con tàu vào quỹ đạo được \(25\) phút.

LG c

LG c

Tìm thời điểm sớm nhất sau khi con tàu đi vào quỹ đạo để có \(d = -1236\).

(Tính chính xác các kết quả đến hàng phần nghìn).

Lời giải chi tiết:

\(\eqalign{
& d = - 1236\cr& \Leftrightarrow 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = - 1236 \cr&\Leftrightarrow \cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = - 0,309 \cr 
& \Leftrightarrow {\pi \over {45}}\left( {t - 10} \right) = \pm \alpha + k2\pi \cr&\left( {\text{ với }\,k \in \mathbb Z\,\text{ và }\,\cos \alpha = - 0,309} \right) \cr 
& \Leftrightarrow t = \pm {{45} \over \pi }\alpha + 10 + 90k \cr} \) 

Sử dụng bảng số hoặc máy tính bỏ túi, ta có thể chọn \(α ≈ 1,885\). Khi đó ta có :

\(t ≈ ± 27,000 + 10 + 90k\), tức là \(t ≈ - 17,000 + 90k\) hoặc \(t ≈ 37,000 + 90k\)

Dễ thấy giá trị dương nhỏ nhất của \(t\) là \(37,000\).

Vậy \(d = -1236 (km)\) xảy ra lần đầu tiên là \(37,000\) phút sau khi con tàu được phóng vào quỹ đạo. 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved