Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Hãy chứng minh
LG a
\({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} < - 2;\)
Lời giải chi tiết:
Ta có \({\log _{{1 \over 2}}}3 = {1 \over {{{\log }_3}{1 \over 2}}}\)và\({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} + \left| {{{\log }_3}{1 \over 2}} \right| > 2\)
( theo công thức đổi cơ số của lôgarit,bất đẳng thức Cô- si và \({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} \ne \left| {{{\log }_3}{1 \over 2}} \right|)\)
Mặt khác, \({\log _3}{1 \over 2} < 0\) nên \( - {1 \over {{{\log }_3}{1 \over 2}}} - {\log _3}{1 \over 2} > 2\), hay \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} < - 2\)
LG b
\({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}}\)
Lời giải chi tiết:
\({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}} \Leftrightarrow {\log _4}{4^{{{\log }_5}7}} = {\log _4}{7^{{{\log }_5}4}} \)
\(\Leftrightarrow {\log _5}7 = {\log _5}4.{\log _4}7\).
Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng .
LG c
\({\log _3}7 + {\log _7}3 > 2;\)
Lời giải chi tiết:
Ta có \({\log _3}7 > 0\),\({\log _7}3 > 0\) và \({\log _3}7 = {1 \over {{{\log }_7}3}} \ne {\log _7}3\).
Theo bất đẳng thức Cô-si, ta có
\({1 \over {{{\log }_7}3}} + {\log _7}3 > 2\),suy ra \({\log _3}7 + {\log _7}3 > 2\).
LG d
\({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}}.\)
Lời giải chi tiết:
\({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}} \Leftrightarrow {\log _3}{3^{{{\log }_2}5}} = {\log _3}{5^{{{\log }_2}3}}\)
\(\Leftrightarrow {\log _2}5 = {\log _2}3.{\log _3}5\).
Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng .
Tải 5 đề kiểm tra 15 phút - Chương 8 – Hóa học 12
Bài 6. Công dân với các quyền tự do cơ bản
Luyện đề đọc hiểu - THPT
CHƯƠNG III. HỆ CƠ SỞ DỮ LIỆU QUAN HỆ
Đề khảo sát chất lượng đầu năm