Tìm các giới hạn sau :
LG a
\(\mathop {\lim }\limits_{x \to - \infty } \root 3 \of {{{{x^2} + 2x} \over {8{x^2} - x + 3}}} \)
Phương pháp giải:
Chia cả tử và mẫu của phân thức cho lũy thừa bậc cao nhất của x.
Lời giải chi tiết:
Ta có:
\(\mathop {\lim }\limits_{x \to - \infty } \root 3 \of {{{{x^2} + 2x} \over {8{x^2} - x + 3}}} = \mathop {\lim }\limits_{x \to - \infty } \root 3 \of {{{1 + {2 \over x}} \over {8 - {1 \over x} + {3 \over {{x^2}}}}}} \) \( = \sqrt[3]{{\frac{{1 + 0}}{{8 - 0 + 0}}}}\) \(= {1 \over 2}\)
LG b
\(\mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2} - x + 2}}\)
Lời giải chi tiết:
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2} - x + 2}} \cr &= \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2}\left( {1 - {1 \over x} + {2 \over {{x^2}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt x }}{{x.{{\left( {\sqrt x } \right)}^2}\left( {1 - \frac{1}{x} + \frac{2}{{{x^2}}}} \right)}}\cr &= \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt x \left( {1 - {1 \over x} + {2 \over {{x^2}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{1}{{\sqrt x }}.\frac{1}{{1 - \frac{1}{x} + \frac{2}{{{x^2}}}}}} \right)= 0 \cr
& \text{vì}\;\mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt x }} = 0\cr &\text{và}\;\mathop {\lim }\limits_{x \to + \infty } {1 \over {1 - {1 \over x} + {2 \over {{x^2}}}}} = 1 \cr} \)
Phần một: Giáo dục kinh tế
Phần 2. Địa lí khu vực và quốc gia
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Lịch sử lớp 11
Bài 11: Tiết 4: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Đông Nam Á - Tập bản đồ Địa lí 11
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11