Đề bài
Cho hàm số
\(f\left( x \right) = \left\{ {\matrix{{2\left| x \right| - 1\,\text{ với }\,x \le - 2,} \cr {\sqrt {2{x^2} + 1} \,\text{ với }\,x > - 2.} \cr} } \right.\)
Tìm \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right),\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\) \(\text{ và }\,\mathop {\lim }\limits_{x \to - 2} f\left( x \right)\) (nếu có).
Phương pháp giải - Xem chi tiết
Tìm hàm số ứng với điều kiện của x, từ đó tính giới hạn.
Chú ý:
\(x \to x_0^ + \) nghĩa là \(x \to x_0 \) và \(x > x_0 \).
\(x \to x_0^ - \) nghĩa là \(x \to x_0 \) và \(x < x_0 \).
Lời giải chi tiết
Ta có:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)= \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \left( {2\left| x \right| - 1} \right) \cr &= 2\left| { - 2} \right| - 1 = 3 \cr
& \mathop {\lim f(x)}\limits_{x \to {{\left( { - 2} \right)}^ + }} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \sqrt {2{x^2} + 1} = 3 \cr & \text{Vì }\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)=\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)=3\cr &\Rightarrow \mathop {\lim }\limits_{x \to - 2} f\left( x \right) = 3. \cr} \)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 11
Unit 5: Cities and Education in the future
Chương 1. Một số khái niệm về lập trình và ngôn ngữ lập trình
Chủ đề 4: Kĩ thuật treo cầu thuận tay và phối hợp kĩ thuật, chiến thuật cơ bản
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11