Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tam giác ABC. Gọi A’, B’, C’ lần lượt là tâm của đường tròn bàng tiếp trong góc A, góc B và góc C. Chứng minh rằng các đường thẳng đi qua A’ vuông góc với BC, qua B’ vuông góc với AC, qua C’ vuông góc với AB đồng quy.
Lời giải chi tiết
Trước hết, dễ thấy rằng các điểm A, B, C lần lượt nằm trên các cạnh B’C’, C’A’, A’B’ của tam giác A’B’C’ và các đường thẳng AA’, BB’, CC’ đi qua tâm O của đường tròn nội tiếp tam giác ABC.
Kẻ \(A'H \bot BC\,\left( {H \in BC} \right)\) ta có:
\(\widehat {CA'H} = \widehat {OCB}\)
(góc có cạnh tương ứng vuông góc) và
\(\widehat {OCB} = \widehat {BA'O}\)
(do tứ giác OBA’C nội tiếp đường tròn).
Từ đó, suy ra:
\(\widehat {CA'H} = \widehat {BA'O}\)
Do đó, nếu gọi I là tâm đường tròn nội tiếp tam giác A’B’C’ thì AI’ là phân giác góc B’A’C’ nên A’H đối xứng với A’O qua đường thẳng A’I. Bởi vậy A’H đi qua điểm đối xứng với O qua phân giác A’I.
Tương tự ta cũng có đường thẳng đi qua B’, vuông góc với AC cũng đi qua điểm đối xứng với O qua B’I và đường thẳng đi qua C’, vuông góc với AB cũng đi qua điểm đối xứng với O qua C’I.
Từ đó áp dụng bài tập 28 ta suy ra điều phải chứng minh.
Unit 8: Cties
Review (Units 5-8)
Unit 2: The generation gap
Unit 9: Social issues
CHƯƠNG 4: ĐẠI CƯƠNG VỀ HÓA HỌC HỮU CƠ
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11