Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Dùng phương pháp đặt ẩn phụ để giải các phương trình sau:
LG a
\(4{\log _9}x + {\log _x}3 = 3\)
Lời giải chi tiết:
Ta có: \({\log _x}3 = {1 \over {{{\log }_3}x}}\). Đặt \(t = {\log _3}x(t \ne 0)\) dẫn đến phương trình
\(2{t^2} - 3t + 1 = 0\)
\(\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _3}x = 1 \hfill \cr
{\log _3}x = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr
x = \sqrt 3 \hfill \cr} \right.\)
Vậy phương trình có hai nghiệm: \(x = 3\) và \(x = \sqrt 3 \)
LG b
\({\log _x}2 - {\log _4}x + {7 \over 6} = 0\)
Lời giải chi tiết:
Ta có: \({\log _x}2 = {1 \over {{{\log }_2}x}}\).
Đặt \(t = {\log _2}x(t \ne 0)\) dẫn đến phương trình
\( - 3{t^2} + 7t + 6 = 0\)
\( \Leftrightarrow \left[ \matrix{
t = 3 \hfill \cr
t = {{ - 2} \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _2}x = 3 \hfill \cr
{\log _2}x = {{ - 2} \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 8 \hfill \cr
x = {2^{{{ - 2} \over 3}}} \hfill \cr} \right.\)
Vậy phương trình có hai nghiệm: \(x = 8\) và \(x = {2^{ - {2 \over 3}}}\)
LG c
\({{1 + {{\log }_3}x} \over {1 + {{\log }_9}x}} = {{1 + {{\log }_{27}}x} \over {1 + {{\log }_{81}}x}}.\)
Lời giải chi tiết:
Đặt \(t = {\log _3}x\), ta có
\(\eqalign{& {{1 + t} \over {1 + {1 \over 2}t}} = {{1 + {1 \over 3}t} \over {1 + {1 \over 4}t}}\cr&\Leftrightarrow 3\left( {1 + t} \right)\left( {4 + t} \right) = 2\left( {2 + t} \right)\left( {3 + t} \right) \cr& \Leftrightarrow 12 + 15t + 3{t^2} = 12 + 10t + 2{t^2} \Leftrightarrow {t^2} + 5t = 0 \cr} \)
\(\, \Leftrightarrow t = 0\) hoặc \(t = - 5\)
Với \(t = 0\) thì \({\log _3}x = 0\), nên \(x = {3^0} = 1\)
Với \(t = - 5\) thì \({\log _3}x = - 5\), nên \(x = {3^{ - 5}} = {1 \over {243}}\)
Vậy phương trình có hai nghiệm: \(x = 1\) và \(x = {1 \over {243}}\)
Nghị luận văn học lớp 12
Đề thi học kì 1
Chương 3. Amin - Amino axit - Peptit - Protein
Chương 4. Polime và vật liệu polime
Bài 22. Vấn đề phát triển nông nghiệp