Bài 32 trang 10 SBT Hình Học 11 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Chứng minh rằng:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

LG a

 Hợp thành của hai phép đối xứng trục có trục cắt nhau là một phép quay.

Lời giải chi tiết:

Giả sử cho hai phép đối xứng trục \({Đ_a}\) và \({Đ_b}\) có trục a và b cắt nhau tại O, còn F là hợp thành của \({Đ_a}\) và \({Đ_b}\).

Lấy hai điểm A, B khác O lần lượt nằm trên a, b sao cho góc AOB không bù và đặt \(\varphi  = \left( {OA,OB} \right).\)

(Chú ý rằng khi đó \(\left| \varphi  \right| = \widehat {AOB}\) là góc hợp bởi hai đường thẳng a và b).

Với mọi điểm M khác O, giả sử \({Đ_a}\) biến M thành \({M_1}\) và \({Đ_b}\) biến \({M_1}\) thành \({M_2}\). Khi đó, nếu gọi H và K lần lượt là trung điểm của \(M{M_1}\) và \({M_1}{M_2}\) thì có:

\(OM = O{M_1} = O{M_2}\)

Và \(\left( {OM,O{M_2}} \right) = \left( {OM,O{M_1}} \right) + \left( {O{M_1},O{M_2}} \right)\)

\(\eqalign{
& = 2\left( {OH,O{M_1}} \right) + 2\left( {O{M_1},OK} \right) \cr 
& = 2\left( {OH,OK} \right) = 2\varphi \cr} \)

Vậy phép hợp thành F là phép quay tâm O góc quay \(2\varphi \)

LG b

LG b

Mỗi phép quay đều có thể xem là hợp thành của hai phép đối xứng trục có trục cắt nhau, bằng nhiều cách.

Lời giải chi tiết:

Giả sử Q là phép quay tâm O góc quay \(\varphi .\)

Ta lấy đường thẳng a nào đó đi qua O và b là ảnh của a qua phép quay tâm O góc quay \({\varphi  \over 2}\) thì hợp thành của hai phép đối xứng trục \({Đ_a}\) và \({Đ_b}\) chính là phép quay Q (theo câu a).

Hiển nhiên có thể chọn a bằng nhiều cách khác nhau.

LG c

LG c

Hợp thành của một số chẵn các phép đối xứng trục có các trục đối xứng đồng quy là một phép quay.

Lời giải chi tiết:

Nếu F là hợp thành của 2n phép đối xứng có trục đối xứng đồng quy tại O thì F là hợp thành của n phép quay có tâm O và do đó F là một phép quay.

LG d

LG d

Hợp thành của một số lẻ các phép đối xứng trục có các trục đối xứng đồng quy là một phép đối xứng trục.

Lời giải chi tiết:

Giả sử F là hợp thành của 2n + 1 phép đối xứng trục có các trục đều đi qua O.

Gọi \({Đ_a}\) là phép đối xứng đầu tiên, thì 2n phép đối xứng trục còn lại có hợp thành là phép quay Q tâm O.

Ta xem Q là hợp thành của hai phép đối xứng trục, trong đó phép thứ nhất là \({Đ_a}\) và phép thứ hai là \({Đ_b}\).

Như vậy, F là hợp thành của ba phép đối xứng trục: \({Đ_a}\), \({Đ_a}\) và \({Đ_b}\).

Vậy F chính là phép đối xứng trục \({Đ_b}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved