Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC, N là trung điểm của OB (O là giao điểm của BD và AC).
a) Tìm giao điểm I của SD và mặt phẳng (AMN).
b) Tính tỉ số \({{SI} \over {ID}}.\)
Lời giải chi tiết
a) Kéo dài AN cắt DC tại E. Nối E và M cắt SD tại I, thế thì I chính là giao điểm của SD và mp(AMN).
b) Gọi F là giao điểm của AN và BC.
\(BF//AD \Rightarrow {{BF} \over {AD}} = {{NB} \over {ND}} = {1 \over 3}\)
Từ
\(\eqalign{
& {{BF} \over {AD}} = {1 \over 3} \Rightarrow {{FC} \over {AD}} = {2 \over 3} \cr
& \Rightarrow {{EC} \over {ED}} = {{FC} \over {AD}} = {2 \over 3} \cr} \)
Kẻ \(CJ//SD\,\left( {J \in EI} \right)\). Ta có:
\(\eqalign{
& {{MC} \over {MS}} = {{CJ} \over {JS}},\,\,{{ID} \over {CJ}} = {{ED} \over {EC}} \cr
& \Rightarrow {IS\over ID}={{MS} \over {MC}}.{{EC} \over {ED}} = 1.{2 \over 3} = {2 \over 3} \cr} \)
Vậy \({{IS} \over {ID}} = {2 \over 3}.\)
Chuyên đề 3: Một số vấn đề về pháp luật lao động
Chủ đề 3: Kĩ thuật đá cầu tấn công và chiến thuật tấn công cơ bản
Review (Units 7 - 8)
Bài 4: Đơn chất nitrogen
Skills (Units 3 - 4)
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11