Đề bài
Cho số thực \(x \ne k2\pi .\) Chứng minh rằng với mọi số nguyên dương n, ta luôn có
\(1 + \cos x + \cos 2x + ... + \cos nx = {{\sin {{\left( {n + 1} \right)x} \over 2}\cos {{nx} \over 2}} \over {\sin {x \over 2}}}\)
Lời giải chi tiết
Bằng phương pháp quy nạp, ta sẽ chứng minh
\(1 + \cos x + \cos 2x + ... + \cos nx = {{\sin {{\left( {n + 1} \right)x} \over 2}\cos {{nx} \over 2}} \over {\sin {x \over 2}}}\) (1) với mọi \(n \in N^*.\)
Với \(n = 1,\) vì \(x \ne k2\pi \) (theo giả thiết) nên
\(1 + \cos x = 2{\cos ^2}{x \over 2} = {{\sin {{\left( {1 + 1} \right)x} \over 2}\cos {{1.x} \over 2}} \over {\sin {x \over 2}}}\) (2)
Như vậy (1) đúng khi \(n = 1\)
Giả sử đã có (1) đúng khi \(n = k,k \in N^*.\) Khi đó , ta có
\(\eqalign{
& 1 + \cos x + \cos 2x + ... + \cos kx + \cos (k + 1)x \cr&= {{\sin {{\left( {1 + 1} \right)x} \over 2}\cos {{kx} \over 2}} \over {\sin {x \over 2}}} + \cos (k + 1)x \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\cos {{kx} \over 2} + \cos (k + 1)x.\sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\cos {{kx} \over 2} - 2{{\sin }^2}{{(k + 1)x} \over 2}.\sin {x \over 2} + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\left( {\cos {{kx} \over 2} - 2\sin {{(k + 1)x} \over 2}.\sin {x \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\left( {\cos {{kx} \over 2} + \cos {{(k + 2)x} \over 2} - \cos {{kx} \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{{1 \over 2}\left( {\sin {{\left( {2k + 3} \right)x} \over 2} - \sin {x \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 2} \right)x} \over 2}\cos {{(k + 1)x} \over 2}} \over {\sin {x \over 2}}} \cr} \)
Nghĩa là ta cũng có (1) đúng khi \(n = k + 1\).
Từ các chứng minh trên suy ra (1) đúng với mọi \(n \in N^*.\)
Chương II. Sóng
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1
Chủ đề 2: Kĩ thuật chuyền, bắt bóng và đột phá
Unit 3: Cities of the future
Chương III. Điện trường
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11