Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi O, O’ lần lượt là tâm của các hình bình hành ABCD và ABEF; \({G_1},\,{G_2}\) lần lượt là trọng tâm của tam giác ABD và ABE. Chứng minh rằng:
a) OO’ song song với mặt phẳng (ADF) và (BCE);
b) \({G_1}{G_2}\) song song với mặt phẳng (CEF).
Lời giải chi tiết
a) OO’ là đường trung bình của tam giác BDF suy ra OO’ // DF.
Mà \(DF \subset \left( {ADF} \right) \Rightarrow OO'//\left( {ADF} \right).\)
OO’ là đường trung bình của tam giác ACE suy ra OO’ // CE.
Mà \(CE \subset \left( {BCE} \right) \Rightarrow OO'//\left( {BCE} \right).\)
b) Gọi I là trung điểm của AB thì I thuộc đường thẳng \({G_1}D\) và đường thẳng \({G_2}E.\)
Xét tam giác IDE. Ta có:
\({{I{G_1}} \over {ID}} = {{I{G_2}} \over {IE}} = {1 \over 3} \Rightarrow {G_1}{G_2}//ED.\)
Do đường thẳng DE nằm trong mặt phẳng (CEF) suy ra \({G_1}{G_2}//\left( {CEF} \right).\)
Chủ đề 8: Một số quyền dân chủ cơ bản của công dân
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Toán lớp 11
Tải 10 đề thi học kì 2 Sinh 11
Chuyên đề 11.1. Phân bón
Chương 5. Tệp và thao tác với tệp
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11