Đề bài
Cho cấp số cộng \(({u_n})\) có công sai \(d > 0,{u_{31}} + {u_{34}} = 11\) và \({\left( {{u_{31}}} \right)^2} + {\left( {{u_{34}}} \right)^2} = 101\). Hãy tìm số hạng tổng quát của cấp số cộng đó.
Lời giải chi tiết
Ta có
\(\eqalign{
& 101 = {\left( {{u_{31}}} \right)^2} + {\left( {{u_{34}}} \right)^2} \cr&\;\;\;\;\;= {1 \over 2}\left[ {{{\left( {{u_{31}} - {u_{34}}} \right)}^2} + {{\left( {{u_{31}} + {u_{34}}} \right)}^2}} \right] \cr&\;\;\;\;\;= {1 \over 2}\left[ {{{11}^2} + {{\left( {{u_{31}} - {u_{34}}} \right)}^2}} \right] \cr
& \Rightarrow {\left( {{u_{31}} - {u_{34}}} \right)^2} = 2 \times 101 - 121 = 81 = {9^2}\,\,\,\,\,\,(1) \cr} \)
Vì \(d > 0\) nên \({u_{31}} < {u_{34}}.\) Do đó, từ (1) ta được \({u_{31}} - {u_{34}} = - 9,\) hay
\( - 9 = {u_{31}} - {u_{34}} = ({u_1} + 30d) - ({u_1} + 33d) = - 3d \)
\(\Rightarrow d = 3\)
Vì thế
\(\eqalign{
& 11 = {u_{31}} + {u_{34}} = \left( {{u_1} + 30d} \right) + \left( {{u_1} + 33d} \right) \cr&\;\;\;\;\;= 2{u_1} + 63d = 2{u_1} + 63 \times 3 = 2{u_1} + 189 \cr
& \Rightarrow {u_1} = - 89. \cr} \)
Từ đó suy ra số hạng tổng quát của cấp số cộng đã cho là :
\({u_n} = - 89 + (n - 1).3\) hay \({u_n} = 3n - 92\)
Cumulative Review
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Unit 5: Challenges
Phần một: Giáo dục kinh tế
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11