Đề bài
Một cấp số nhân có 7 số hạng với số hạng đầu và cộng bội là các số âm. Biết rằng tích của số hạng thứ ba và số hạng số hạng thứ năm bằng 5184, tích của số hạng thứ năm và số hạng cuối bằng 746496. Hãy tìm cấp số nhân đó.
Lời giải chi tiết
Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ n của cấp số nhân cần tìm. Theo giả thiết ta có
\({u_3}.{u_5} = 5184\) và \({u_5}.{u_7} = 746496\)
Vì cấp số nhân đã cho có số hạng đầu và công bội là các số âm nên
\({u_1} < 0,{u_2} > 0,{u_3} < 0,{u_4} > 0,\)
\({u_5} < 0,{u_6} > 0,{u_7} < 0\)
Từ đó
\(\left. \matrix{
u_4^2 = 5182 \Rightarrow {u_4} = 72 \hfill \cr
u_6^2 = 746496 \Rightarrow {u_6} = 864 \hfill \cr} \right\}\)
\(\Rightarrow u_5^2 = {u_4}.{u_6} = 72 \times 864 = 62208 \)
\(\Rightarrow {u_5} = - 144\sqrt 3 \)
Suy ra
\({u_7} = {{746496} \over { - 144\sqrt 3 }} = - 1728\sqrt 3 \)
\({u_3} = {{5184} \over { - 144\sqrt 3 }} = - 12\sqrt 3 \)
\({u_2} = {{u_3^2} \over {{u_4}}} = {{432} \over {72}} = 6\)
\({u_1} = {{u_2^2} \over {{u_3}}} = {{36} \over { - 12\sqrt 3 }} = - \sqrt 3 \)
Vậy cấp số nhân cần tìm là: \( - \sqrt 3 ,6, - 12\sqrt 3 ,72, - 144\sqrt 3 ,864, - 1728\sqrt 3 \)
Unit 4: Global warming
Phần 2. Địa lí khu vực và quốc gia
Bài 11: Cấu tạo hóa học của hợp chất hữu cơ
CHƯƠNG 7: HIĐROCACBON THƠM, NGUỒN HIĐROCACBON THIÊN NHIÊN. HỆ THỐNG HÓA VỀ HIĐROCACBON
Giáo dục pháp luật
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11