Cho dãy số \(({u_n})\) mà tổng n số hạng đầu tiên của nó, kí hiệu là \({S_n}\), được tính theo công thức sau :
\({S_n} = {{n(7 - 3n)} \over 2}.\)
LG a
LG a
Hãy tính \({u_1},{u_2}\) và \({u_3}.\)
Lời giải chi tiết:
Ta có \({u_1} = {S_1} = 2,{u_2} = \left( {{u_1} + {u_2}} \right) - {u_1} \)
\(= {S_2} - {u_1} = {S_2} - {S_1} = 1 - 2 = - 1,\)
\({u_3} = \left( {{u_1} + {u_2} + {u_3}} \right) - ({u_1} + {u_2})\)\( = {S_3} - {S_2} = - 4.\)
LG b
LG b
Hãy xác định số hạng tổng quát của dãy số \(({u_n})\).
Lời giải chi tiết:
Đặt \({S_0} = 0,\) ta có số hạng tổng quát của dãy số đã cho là:
\({u_n} = {S_n} - {S_{n - 1}} = {{n\left( {7 - 3n} \right)} \over 2} \)\(- {{\left( {n - 1} \right)\left[ {7 - 3\left( {n - 1} \right)} \right]} \over 2} \)
\(= 5 - 3n.\)
LG c
LG c
Chứng minh rằng dãy số \(({u_n})\) là một cấp số cộng. Hãy xác định công sai của cấp số cộng đó.
Lời giải chi tiết:
Ta có \({u_{n + 1}} - {u_n} = 5 - 3\left( {n + 1} \right) - 5 + 3n\)\( = - 3\) với mọi \(n \ge 1.\) Vì thế, \(({u_n})\) là một cấp số cộng với công sai bằng \( - 3\).
Chương VI. Động cơ đốt trong
Tải 10 đề kiểm tra 1 tiết - Chương 4
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 11
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
Unit 9: Good citizens
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11