Cho dãy số \(({u_n})\) xác định bởi
\({u_1} = 1\) và \({u_{n + 1}} = 6{u_n} - 1\) với mọi \(n \ge 1.\)
LG a
LG a
Chứng minh dãy số \(({v_n}),\) mà \({v_n} = {u_n} - {1 \over 5}\) với mọi \(n \ge 1,\) là một cấp số nhân. Hãy xác định số hạng đầu và công bội của cấp số nhân đó.
Lời giải chi tiết:
Từ hệ thức xác định dãy số \(({u_n})\), ta có \({u_{n + 1}} - {1 \over 5} = 6\left( {{u_n} - {1 \over 5}} \right)\) với mọi \(n \ge 1,\) hay
\(\forall n \ge 1,{v_{n + 1}} = 6{v_n}\)
Vì thế, dãy số \(({v_n})\) là một cấp số nhân với số hạng đầu \({v_1} = {u_1} - {1 \over 5} = 1 - {1 \over 5} = {4 \over 5}\) và công bội \(q = 6.\)
LG b
LG b
Hãy xác định số hạng tổng quát của dãy số \(({u_n})\).
Lời giải chi tiết:
Từ kết quả phần a) suy ra với mọi \(n \ge 1\)
\(\eqalign{
& {v_n} = {v_1}.{q^{n - 1}} = {{{{4.6}^{n - 1}}} \over 5}; \cr
& {u_n} = {v_n} + {1 \over 5} = {{{{4.6}^{n - 1}} + 1} \over 5}. \cr} \)
LG c
LG c
Tính tổng 10 số hạng đầu tiên của dãy số \(({u_n})\).
Lời giải chi tiết:
Kí hiệu \({T_{10}}\) là tổng 10 số hạng đầu tiên của dãy số \(({u_n})\) và \({S_{10}}\) là tổng 10 số hạng đầu tiên của cấp số nhân \(({v_n})\). Ta có
\({T_{10}} = {S_{10}} + 10 \times {1 \over 5} = {4 \over 5} \times {{1 - {6^{10}}} \over {1 - 6}} + 2\)\( = 9674590.\)
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Chuyên đề 1. Trường hấp dẫn
Chủ đề 3. Các phương pháp gia công cơ khí
CHƯƠNG VII. MẮT. CÁC DỤNG CỤ QUANG
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Hóa học lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11