Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chữ nhật ABCD với tâm O, AB = a, BC = 2a. Lấy điểm S trong không gian sao cho SO vuông góc với mặt phẳng (ABCD), đặt SO = h. Gọi M và N lần lượt là trung điểm của AB và CD.
a) Tính góc giữa mp(SMN) với các mặt phẳng (SAB) và (SCD). Tìm hệ thức liên hệ giữa h và a để mp(SMN) vuông góc với các mặt phẳng (SAB), (SCD).
b) Tính góc giữa hai mặt phẳng (SAB) và (SCD). Tính h theo a để hai mặt phẳng đó vuông góc.
Lời giải chi tiết
a) Vì \(MN \bot AB,SO \bot AB\) nên \(AB \bot \left( {SMN} \right) \Rightarrow \left( {SAB} \right) \bot \left( {SMN} \right)\). Vậy góc giữa (SMN) và (SAB) cũng bằng 90°.
Tương tự, góc giữa (SMN) và (SCD) cũng bằng 90°.
Như vậy với AB = a, BC = 2a, h tùy ý thì (SMN) vuông góc cả với hai mặt phẳng (SAB) và (SCD).
b) Dễ thấy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = St,St//AB\).
Như vậy \(St \bot \left( {SMN} \right)\), từ đó \(\widehat {M{\rm{S}}N}\) hoặc \({180^0} - \widehat {M{\rm{S}}N}\) là góc giữa hai mặt phẳng (SAB) và (SCD).
Tính \(\widehat {M{\rm{S}}N}\).
Ta có
\(S{M^2} = S{N^2} = {h^2} + {a^2} \)
\(M{N^2} = S{M^2} + S{N^2} - 2{\rm{S}}M.SN\cos \widehat {MSN} \)
\(\Leftrightarrow 4{a^2} = {h^2} + {a^2} + {h^2} + {a^2} - 2\left( {{h^2} + {a^2}} \right)\cos \widehat {MSN} \)
tức là \(\cos \widehat {MSN} = {{2{h^2} - 2{a^2}} \over {2\left( {{h^2} + {a^2}} \right)}} = {{{h^2} - {a^2}} \over {{h^2} + {a^2}}}.\)
Vậy góc giữa hai mặt phẳng (SAB) và (SCD) là α mà \(\cos \alpha = \left| {{{{h^2} - {a^2}} \over {{h^2} + {a^2}}}} \right|\).
Từ đó hai mặt phẳng (SAB) và (SCD) vuông góc khi và chỉ khi h = a.
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chủ đề 4. Dòng điện. Mạch điện
CHƯƠNG VII. MẮT. CÁC DỤNG CỤ QUANG
Đề minh họa số 4
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11