Chứng minh rằng với mọi \(n ≥ 1\), ta có :
LG a
LG a
Nếu \(f\left( x \right) = \frac{1}{x}\,\text{ thì }\,{f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\)
Phương pháp giải:
Chứng minh bằng phương pháp qui nạp.
Lời giải chi tiết:
Cho \(f\left( x \right) = \frac{1}{x}\left( {x \ne 0} \right).\) Ta hãy chứng minh công thức :
\({f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\left( {\forall x \ge 1} \right)\,\,\left( 1 \right)\) bằng phương pháp qui nạp.
+ Với \(n = 1\), ta có : \({f^{\left( n \right)}}\left( x \right) = f'\left( x \right) = - \frac{1}{{{x^2}}}\) \(\text{ và }\,\frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}} = - \frac{1}{{{x^2}}}\)
Suy ra (1) đúng khi n = 1.
+ Giả sử (1) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là : \({f^{\left( k \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}\),
Ta phải chứng minh (1) cũng đúng cho trường hợp \(n = k + 1\), tức là :
\({f^{\left( {k + 1} \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)
Thật vậy, ta có :
\({f^{\left( {k + 1} \right)}}\left( x \right) = \left[ {{f^{\left( k \right)}}\left( x \right)} \right]' \)
\( = \left[ {\frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}} \right]' \) \(= {\left( { - 1} \right)^k}.k!\frac{{ - \left( {{x^{k + 1}}} \right)'}}{{{{\left( {{x^{k + 1}}} \right)}^2}}} \) \(= {\left( { - 1} \right)^k}.k!.\frac{{\left( { - 1} \right).\left( {k + 1} \right){x^k}}}{{{x^{2k + 2}}}} \) \( = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)
Vậy ta có đpcm.
LG b
LG b
Nếu \(f\left( x \right) = \cos x\,\text{ thì }\,{f^{\left( {4n} \right)}}\left( x \right) = \cos x.\)
Lời giải chi tiết:
Cho \(f(x) = \cos x\). Ta hãy chứng minh công thức :
\({f^{\left( {4n} \right)}}\left( x \right) = \cos x\left( {\forall n \ge 1} \right)\,\,\left( 2 \right)\) bằng phương pháp qui nạp.
Ta có: \(f'\left( x \right) = - \sin x;f"\left( x \right) = - \cos x;\)
\(f'''\left( x \right) = \sin x;{f^{\left( 4 \right)}}\left( x \right) = \cos x\)
+ Với n = 1 thì \({f^{\left( {4n} \right)}}\left( x \right) = {f^{\left( 4 \right)}}\left( x \right) = \cos x\)
Suy ra (2) đúng khi n = 1
+ Giả sử (2) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là : \({f^{\left( {4k} \right)}}\left( x \right) = \cos x,\)
Ta phải chứng minh (2) cũng đúng cho trường hợp \(n = k + 1\), tức là phải chứng minh :
\({f^{\left( {4\left( {k + 1} \right)} \right)}}\left( x \right) = \cos x\) \(\left( {hay\,{f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x} \right)\)
Thật vậy, vì :
\(\begin{array}{l}
{f^{\left( {4k} \right)}}\left( x \right) = \cos x \\ \text{ nên }\,{f^{\left( {4k + 1} \right)}}\left( x \right) = - \sin x\\
{f^{\left( {4k + 2} \right)}}\left( x \right) = - \cos x\\
{f^{\left( {4k + 3} \right)}}\left( x \right) = \sin x\\
{f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x
\end{array}\)
Vậy ta có đpcm.
LG c
LG c
Nếu \(f\left( x \right) = \sin ax\) (a là hằng số) thì \({f^{\left( {4n} \right)}}\left( x \right) = {a^{4n}}\sin ax.\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
f'\left( x \right) = a{\mathop{\rm cosax}\nolimits} \\
f"\left( x \right) = - {a^2}\sin ax\\
{f^{\left( 3 \right)}}\left( x \right) = - {a^3}\cos ax\\
{f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax
\end{array}\)
Với \(n = 1\) ta có \({f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax,\) đẳng thức đúng với \(n = 1\)
Giả sử đẳng thức đúng với \(n = k\) tức là : \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)
Với \(n = k + 1\) ta có \({f^{\left( {4k + 4} \right)}}\left( x \right) = {\left( {{f^{\left( {4k} \right)}}} \right)^{\left( 4 \right)}}\left( x \right) \) \(= {\left( {{a^{4k}}\sin ax} \right)^{\left( 4 \right)}}\)
Do \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)
\(\begin{array}{l}
{f^{\left( {4k + 1} \right)}}\left( x \right) = {a^{4k + 1}}\cos ax\\
{f^{\left( {4k + 2} \right)}}\left( x \right) = - {a^{4k + 2}}\sin ax\\
{f^{\left( {4k + 3} \right)}}\left( x \right) = - {a^{4k + 3}}\cos ax\\
{f^{\left( {4k + 4} \right)}}\left( x \right) = {a^{4k + 4}}\sin ax
\end{array}\)
Vậy đẳng thức đúng với \(n = k + 1\), do đó đẳng thức đúng với mọi n.
Hello!
Tải 10 đề kiểm tra 15 phút - Chương II - Hóa học 11
CHƯƠNG 7: HIĐROCACBON THƠM, NGUỒN HIĐROCACBON THIÊN NHIÊN. HỆ THỐNG HÓA VỀ HIĐROCACBON
B
Tải 10 đề kiểm tra 15 phút - Chương IV - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11