Đề bài
Cho hàm số
\(f\left( x \right) = \left\{ \matrix{
\sqrt {9 - {x^2}} \text{ với } - 3 \le x < 3 \hfill \cr
1\text{ với }x = 3 \hfill \cr
\sqrt {{x^2} - 9} \text{ với }x > 3. \hfill \cr} \right.\)
Tìm \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right),\) và \(\mathop {\lim }\limits_{x \to 3} f\left( x \right)\) (nếu có).
Lời giải chi tiết
\(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \sqrt {{x^2} - 9} = 0;\)
\(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}} = 0.\)
Do đó
\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 0.\)
Chủ đề 9: Một số quyền tự do cơ bản của công dân
Chủ đề 1: Vai trò, tác dụng của môn bóng rổ đối với sự phát triển thể chất - các tình huống được phát bóng biên và ném phạt trong thi đấu môn bóng rổ
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Chương I. Dao động
Unit 11: Careers
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11