Tìm vi phân của mỗi hàm số sau :
LG a
LG a
\(y = {\tan ^2}3x - \cot 3{x^2}\)
Phương pháp giải:
Sử dụng công thức dy=y'dx.
Lời giải chi tiết:
\(y' = 2\tan 3x.\left( {\tan 3x} \right)'\) \( - \left( {3{x^2}} \right)'.\frac{{ - 1}}{{{{\sin }^2}3{x^2}}} \) \(= 2\tan 3x.\left( {3x} \right)'.\frac{1}{{{{\cos }^2}3x}}\) \( + 6x.\left( {1 + {{\cot }^2}3{x^2}} \right) \) \( = 6\tan 3x\left( {1 + {{\tan }^2}3x} \right) \) \( + 6x.\left( {1 + {{\cot }^2}3{x^2}} \right)\)
\(\eqalign{ & \Rightarrow dy = y'dx \cr &= \left[ {6\tan 3x\left( {1 + {{\tan }^2}3x} \right) + 6x\left( {1 + {{\cot }^2}3{x^2}} \right)} \right]dx \cr} \)
LG b
LG b
\(y = \sqrt {{{\cos }^2}2x + 1} \)
Lời giải chi tiết:
\(\eqalign{ & y' = \frac{{\left( {{{\cos }^2}2x + 1} \right)'}}{{2\sqrt {{{\cos }^2}2x + 1} }}\cr & = \frac{{2\cos 2x.\left( {\cos 2x} \right)'}}{{2\sqrt {{{\cos }^2}2x + 1} }}\cr &= {{2\cos 2x.\left( { - 2\sin 2x} \right)} \over {2\sqrt {{{\cos }^2}2x + 1} }} \cr &= {{ - \sin 4x} \over {\sqrt {{{\cos }^2}2x + 1} }} \cr & \Rightarrow dy = y'dx = - {{\sin4 x} \over {\sqrt {{{\cos }^2}2x + 1} }}dx \cr} \)
Bài 1. Sự tương phản về trình độ phát triển kinh tế - xã hội của các nhóm nước. Cuộc cách mạng khoa học và công nghệ hiện đại - Tập bản đồ Địa lí 11
Chương 2: Nitrogen và sulfur
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Chủ đề 2. Cảm ứng ở sinh vật
Chủ đề 2: Chủ nghĩa xã hội từ năm 1917 đến nay
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11