Câu 46 trang 59 Sách Bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABCD đáy là hình thang (AB // CD). Điểm M thuộc cạnh BC không trùng với B và C.a) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (P) qua M và song song với mp(SAB). Thiết diện là hình gì?

b) Gọi E và F lần lượt là giao điểm của mp(P) với SD và SC. Chứng minh rằng giao điểm I của NE và MF chạy trên một đường thẳng cố định.

Lời giải chi tiết

(h.99)

a) \(\left. \matrix{
\left( P \right)//\left( {SAB} \right) \hfill \cr 
\left( P \right) \cap \left( {ABCD} \right) = MN \hfill \cr 
\left( {SAB} \right) \cap \left( {ABCD} \right) = AB \hfill \cr} \right\} \Rightarrow MN//AB\,\,(1)\)

\(\left. \matrix{
\left( P \right)//\left( {SAB} \right) \hfill \cr 
\left( P \right) \cap \left( {SBC} \right) = MF \hfill \cr 
\left( {SAB} \right) \cap \left( {SBC} \right) = SB \hfill \cr} \right\} \Rightarrow MF//SB\,\,(2)\)

\(\left. \matrix{
\left( P \right)//\left( {SAB} \right) \hfill \cr 
\left( P \right) \cap \left( {SAD} \right) = NE \hfill \cr 
\left( {SAB} \right) \cap \left( {SAD} \right) = SA \hfill \cr} \right\} \Rightarrow NE//SA\,\,(3)\)

\(\left. \matrix{
\left( P \right)//CD \hfill \cr 
CD \subset \left( {SCD} \right) \hfill \cr 
\left( P \right) \cap \left( {SCD} \right){\rm{ = EF}} \hfill \cr} \right\} \Rightarrow EF//CD\,\,(4)\)

Các điểm N, E, F được xác định bởi (1), (2), (3), (4) là giao điểm của (P) với AD, SD, SC có tính chất EF // MN. Vậy thiết diện là hình thang MNEF.

b) Xét ba mặt phẳng (P), (SAD), (SBC). Ta có:

\(\eqalign{
& \left( P \right) \cap \left( {SAD} \right) = NE \cr 
& \left( P \right) \subset \left( {SBC} \right) = MF \cr 
& \left( {SAD} \right) \cap \left( {SBC} \right){\rm{ = }}\Delta \cr} \)

Vậy ba đường thẳng NE, MF, \(\Delta \) đồng quy tại I (I là giao điểm của NE và MF). Từ đó, điểm I chạy trên đường thẳng \(\Delta \) cố định.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved