Bài 49 trang 12 SBT Hình Học 11 Nâng cao

Đề bài

Chứng minh rằng hai tam giác bằng nhau nếu có các đường tròn nội tiếp bằng nhau, một cặp đường tròn bàng tiếp bằng nhau, đồng thời khoảng cách giữa tâm đường tròn nội tiếp và bàng tiếp của hai tam giác đó cũng bằng nhau.

Lời giải chi tiết

Giả sử tam giác ABC có đường tròn nội tiếp (O;r), đường tròn bàng tiếp góc A là (I; R), tam giác A’B’C’ có đường tròn nội tiếp (O'; r), đường tròn bàng tiếp góc A’ là (I'; R); đồng thời OI = O'I'.

Vì OI = O'I' nên có phép dời hình F biến O thành O’ và I thành I’, khi đó F biến (O; r) thành (O'; r) và biến (I; R) thành (I'; R).

Mặt khác F biến cặp tiếp tuyến chung ngoài AB và AC của hai đường tròn (O) và (I)  thành cặp tiếp tuyến chung ngoài A’B’ và A’C’ (hoặc thành A’C’ và A’B’), còn tiếp tuyến chung BC phải biến thành tiếp tuyến chung B’C’. 

Suy ra F biến tam giác ABC thành tam giác A’B’C’ hoặc thành tam giác A’C’B’, tức là hai tam giác ABC và A’B’C’ bằng nhau.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved