Cho hàm số \(f\left( x \right) = 2\sin x + \cos \left( {x - {\pi \over 4}} \right)\)
LG a
Tìm giá trị nhỏ nhất và lớn nhất của f(x)
Lời giải chi tiết:
Giá trị lớn nhất là \(\sqrt {5 + 2\sqrt 2 } \); giá trị nhỏ nhất là \( - \sqrt {5 + 2\sqrt 2 } \)
LG b
Giải phương trình \(f\left( x \right) = {{\sqrt 2 } \over 2}\)
Lời giải chi tiết:
\(\,\,x = k2\pi ;\,\,\,x = 2\alpha + k2\pi \) với \(\sin \alpha = {{4 + \sqrt 2 } \over {2\sqrt {5 + 2\sqrt 2 } }}\) và \(\cos \alpha = {{\sqrt 2 } \over {2\sqrt {5 + 2\sqrt 2 } }}\)
LG c
Tìm giá trị gần đúng (chính xác đến hàng phần nghìn) của các nghiệm nằm trong khoảng \(\left( {0;2\pi } \right)\) của phương trình \(f\left( x \right) = {{\sqrt 2 } \over 2}\)
Lời giải chi tiết:
Trong khoảng \(\left( {0;2\pi } \right)\), không có giá trị nào thuộc họ \(\,\,x = k2\pi \). Đối với họ nghiệm thứ hai, ta có thể chọn \(\alpha = \arccos {{\sqrt 2 } \over {2\sqrt {5 + 2\sqrt 2 } }} \approx 1,3153\). Khi đó ta có \(0 < \alpha < {\pi \over 2}\) và
\(\eqalign{
& - 2\alpha + k2\pi \in \left( {0;2\pi } \right) \Leftrightarrow 0 < - 2\alpha + k2\pi < 2\pi \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 2\alpha < k2\pi < 2\alpha + 2\pi \cr} \)
Vậy chỉ có một giá trị nghiệm duy nhất của k thỏa mãn điều kiện này, đó là k = 1. Vậy \(\,\,x = - 2\alpha + 2\pi \approx 3,653\)
CHƯƠNG II: NHÓM NITƠ
Chuyên đề 3. Vệ sinh an toàn thực phẩm
Chuyên đề 3: Đọc, viết và giới thiệu về một tác phẩm văn học
Chuyên đề 3: Một số vấn đề về pháp luật lao động
Chủ đề 3. Quá trình giành độc lập dân tộc của các quốc Đông Nam Á
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11