Xếp ngẫu nhiên ba bạn nam và ba bạn nữ ngồi vào sáu ghế kê theo hàng ngang. Tìm xác suất sao cho:
LG a
Nam, nữ ngồi xen kẽ nhau
Phương pháp giải:
Đánh số thứ tự ghế và chọn ghế sao cho nam, nữ ngồi xen kẽ nhau.
Lời giải chi tiết:
Số cách xếp \(3\) nam và \(3\) nữ vào \(6\) ghế là \(6!\) Cách.
Suy ra: \(n(\Omega ) = 6! = 720\)
a) Ta gọi \(A\) là biến cố : “Nam, nữ ngồi xen kẽ nhau”
Ta đánh số ghế như sau:
Trường hợp 1:
+ Nam ngồi ghế số \(1, 3, 5\) suy ra có \(3!\) cách xếp
+ Nữ ngồi ghế số \(2, 4, 6\) suy ra có \(3!\) cách xếp
Suy ra trường hợp 1 có \(3!.3! = 36\) cách xếp
Trường hợp 2:
+ Nữ ngồi ghế số \(1, 3, 5\) suy ra có \(3!\) cách xếp
+ Nam ngồi ghế số \(2, 4, 6\) suy ra có \(3!\) cách xếp
Suy ra trường hợp 1 có \(3!.3! = 36\) cách xếp
Suy ra:
\(N(A) = 3!.3! + 3!.3! = 36 + 36 = 72\) cách xếp.
Vậy \(\displaystyle P(A) = {{n(A)} \over {n(\Omega )}} = {{72} \over {720}} = {1 \over {10}} = 0,1\)
LG b
Ba bạn nam ngồi cạnh nhau
Phương pháp giải:
Sử dụng quy tắc buộc, buộc ba bạn nam lại và coi đó là 1 phần tử.
Lời giải chi tiết:
Gọi biến cố \(B\): “Ba bạn nam ngồi cạnh nhau”
Xem \(3\) bạn nam như một phần tử \(N\) và \(N\) cùng \(3\) bạn nữ được xem như ngồi vào \(4\) ghế được đánh số như sau:
Số cách xếp \(N\) và \(3\) nữ vào \(4\) ghế là \(4!\)
Mỗi cách hoán vị \(3\) nam cho nhau trong cùng một vị trí ta có thêm \(3!\) cách xếp khác nhau.
Suy ra \(n(B) = 4!.3!=144\)
Vậy : \(\displaystyle P(B) = {{n(B)} \over {n(\Omega )}} = {{144} \over {720}} = {1 \over 5} = 0,2\)
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Phần ba. Sinh học cơ thể
Unit 10: Cities of the future
Unit 15: Space Conquest - Cuộc chinh phục không gian
Chủ đề 4: Ý tưởng, cơ hội kinh doanh và các năng lực cần thiết của người kinh doanh
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11