Đề bài
Cho hàm số
\(y = \root 3 \of x \)
Chứng minh rằng: \(y'\left( x \right) = {1 \over {3\root 3 \of {{x^2}} }}\,\,\left( {x \ne 0} \right)\)
Lời giải chi tiết
Với mỗi \(a \ne 0,\) ta tính đạo hàm của hàm số \(y = \root 3 \of x \) tại điểm theo định nghĩa
- Tính \(\Delta y\)
\(\Delta y = \root 3 \of {x + \Delta x} - \root 3 \of x \)
\( = {{\left( {\root 3 \of {x + \Delta x} - \root 3 \of x } \right)\left( {\root 3 \of {{{\left( {x + \Delta x} \right)}^2}} + \root 3 \of {x\left( {x + \Delta x} \right)} + \root 3 \of {{x^2}} } \right)} \over {\root 3 \of {{{\left( {x + \Delta x} \right)}^2}} + \root 3 \of {x\left( {x + \Delta x} \right)} + \root 3 \of {{x^2}} }}\)
\(= {{\Delta x} \over {\root 3 \of {{{\left( {x + \Delta x} \right)}^2}} + \root 3 \of {x\left( {x + \Delta x} \right)} + \root 3 \of {{x^2}} }} \)
- Tìm giới hạn
\(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} {1 \over {\root 3 \of {\left( {x + \Delta x} \right)^2} + \root 3 \of {x\left( {x + \Delta x} \right) + \root 3 \of {{x^2}} } }} = {1 \over {3\root 3 \of {{x^2}} }} \)
\(= y'\left( x \right)\)
Unit 3: Global warming
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
CHƯƠNG II. CẢM ỨNG
Unit 3: A Party - Một bữa tiệc
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11