ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Câu 5.22 trang 182 sách bài tập Đại số và Giải tích 11 Nâng cao

Đề bài

Cho hai hàm số

                        \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x\)  và \(g\left( x \right) = {1 \over 4}\cos 4x\)

Chứng minh rằng

                        \(f'\left( x \right) = g'\left( x \right)\,\,\,\left( {\forall x \in R} \right)\)

Lời giải chi tiết

Cách 1. Với mọi \(x \in R\), ta có

\(\eqalign{ f'\left( x \right)& = 4{\sin ^3}x\cos x + 4{\cos ^3}x\left( { - \sin x} \right) \cr&= 4\sin x\cos x({\sin ^2}x - {\cos ^2}x)  \cr& = 2\sin 2x\left( { - \cos 2x} \right) =  - \sin 4x. \cr} \)

Mặt khác ta có

    \(g'\left( x \right) = {1 \over 4}\left( { - 4\sin 4x} \right) =  - \sin 4x.\)

Vậy với mọi \(x \in R\), ta có

                        \(f'\left( x \right) = g'\left( x \right).\)

Cách 2. Ta chứng minh rằng \(f\left( x \right)\)  và \(g\left( x \right)\) khác nhau một hằng số ; vì hai hàm số khác nhau một hằng số thì rõ ràng đạo hàm của chúng bằng nhau (nếu chúng có đạo hàm) . Thật vậy, ta có

\(\eqalign{{\sin ^4}x + {\cos ^4}x &= {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x  \cr& = 1 - {1 \over 2}{\sin ^2}2x\cr& = 1 - {1 \over 2}.{{1 - \cos 4x} \over 2} \cr&= {3 \over 4} + {1 \over 4}\cos 4x \cr} \)

Tức là  \(f\left( x \right) = {3 \over 4} = g\left( x\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\forall x \in R} \right).\)

Vậy                             \(f'\left( x \right) = g'\left( x \right).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved