Đề bài
Tìm a để phương trình \(f'\left( x \right) = 0\) có nghiệm, biết rằng
\(f\left( x \right) = a\cos x + 2\sin x - 3x + 1\)
Lời giải chi tiết
Với mọi \(x \in R\) ta có
\(f'\left( x \right) = a\sin x + 2\cos x - 3.\)
Để \(f'\left( x \right) = 0\) có nghiệm thì ta phải tìm a sao cho phương trình \(2\cos x - a\sin x = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\) có nghiệm. Ta có
\(\left( 1 \right) \Leftrightarrow {2 \over {\sqrt {{a^2} + 4} }}\cos x - {a \over {\sqrt {{a^2} + 4} }}\sin x = {3 \over {\sqrt {{a^2} + 4} }}\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Vì \({\left( {{2 \over {\sqrt {{a^2} + 4} }}} \right)^2} + {\left( {{a \over {\sqrt {{a^2} + 4} }}} \right)^2} = 1\) nên có số \(\alpha \) sao cho\(\left\{ \matrix{\cos \alpha = {2 \over {\sqrt {{a^2} + 4} }} \hfill \cr\sin \alpha = {a \over {\sqrt {{a^2} + 4} }} \hfill \cr} \right.\)
Thế vào (2), ta được : \(\cos x\cos \alpha - \sin x\sin \alpha = {3 \over {\sqrt {{a^2} + 4} }}\)
\( \Leftrightarrow \cos \left( {x + \alpha } \right) = {3 \over {\sqrt {{a^2} + 4} \,}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\)
Phương trình (3) có nghiệm khi và chỉ khi
\( - 1 \le {3 \over {\sqrt {{a^2} + 4} }} \le 1 \Leftrightarrow 3 \le \sqrt {{a^2} + 4} \Leftrightarrow {a^2} + 4 \ge 9 \)
\(\Leftrightarrow {a^2} \ge 5 \Leftrightarrow \left| a \right| \ge \sqrt {5} \)
Review Unit 1
Unit 4: The Body
Unit 7: Things that Matter
Chuyên đề 3: Danh nhân trong lịch sử Việt Nam
SBT Ngữ văn 11 - Chân trời sáng tạo tập 1
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11