Đề bài
Cho biết \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right)} \over x} = A\) và \(f\left( 0 \right) = 0.\) Chứng minh rằng \(A = f'\left( 0 \right).\)
Lời giải chi tiết
Theo định nghĩa, ta có
\(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}}\)
Vì \(f\left( 0 \right) = 0\) nên
\(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} {{f\left( x \right)} \over x} = A\)
Chủ đề 2. Sóng
Unit 10: Travel
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1
Unit 4: Home
Chương 4: Dòng điện không đổi
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11