ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Câu 5.42 trang 186 sách bài tập Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Giải và biện luận các phương trình sau (m là tham số):

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

\(f'\left( x \right) = 0\) biết \(f\left( x \right) = {{m{x^4}} \over 4} - \left( {m + 2} \right){{{x^3}} \over 3} + {{5{x^2}} \over 2} - 3x + 1\)

Lời giải chi tiết:

 Với mọi \(x \in R\), ta có

\(\eqalign{& f'\left( x \right) = m{x^3} - \left( {m + 2} \right){x^2} + 5x - 3  \cr& f'\left( x \right) = 0 \Leftrightarrow m{x^3} - \left( {m + 2} \right){x^2} + 5x-3=0\,\,\,\left( 1 \right) \cr} \)

Thử thấy \(x = 1\) là một nghiệm, nên ta có thể viết (1) dưới dạng

\(\eqalign{& \left( {x - 1} \right)\left( {m{x^2} - 2x + 3} \right) = 0  \cr&  \Leftrightarrow \left[ \matrix{x=1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {2a} \right) \hfill \cr m{x^2} - 2x + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {2b} \right) \hfill \cr}  \right. \cr} \)

Ta hãy giải phương trình (2b). Xét hai trường hợp

\( \bullet \) Với \(m = 0\) thì \(\left( {2b} \right) \Leftrightarrow x = {3 \over 2}\)

\( \bullet \) Với \(m \ne 0\) thì

                        \(\left( {2b} \right) \Leftrightarrow x = {{1 \pm \sqrt {1 - 3m} } \over m}\) (Với điều kiện \(0 \ne m \le {1 \over 3}\) )

Kết luận

+ Với \(m > {1 \over 3}\), phương trình có nghiệm \({x_0} = 1\)

+ Với \(m = 0\), phương trình có nghiệm  \({x_0} = 1\) và \({x_1} = {3 \over 2}\)

+ Với \(0 \ne m \le {1 \over 3}\), phương trình có các nghiệm là

                        \({x_0} = 1,{x_1} = {{1 - \sqrt {1 - 3m} } \over m}\) và \({x_2} = {{1 + \sqrt {1 - 3m} } \over m}\)

LG b

LG b

\(f\left( x \right).f'\left( x \right) = m\) biết \(f\left( x \right) = \sqrt {{x^2} - 2x - 8} \)

Lời giải chi tiết:

Để hàm số đã cho cá đạo hàm thì ta phải có

                        \({x^2} - 2x - 8 > 0 \Leftrightarrow x <  - 2\) hoặc \(x > 4.\)

Với điều kiện \(x <  - 2\) hoặc \(x > 4,\) ta có

                        \(f'\left( x \right) = {{x - 1} \over {\sqrt {{x^2} - 2x - 8} }}\)

Phương trình

\(\eqalign{& f\left( x \right).f'\left( x \right) = m\cr& \Leftrightarrow \left\{ \matrix{x <  - 2\text{ hoặc }x > 4 \hfill \cr{{x - 1} \over {\sqrt {{x^2} - 2x - 8} }}.\sqrt {{x^2} - 2x - 8}  = m \hfill \cr}  \right.\cr& \Leftrightarrow \left\{\matrix{x <  - 2\text{ hoặc }x > 4 \hfill \cr x - 1 = m \hfill \cr}  \right.  \cr&  \Leftrightarrow \left[ \matrix{\left\{ \matrix{x = 1 + m \hfill \cr1 + m <  - 2 \hfill \cr}  \right. \hfill \cr\left\{ \matrix{x = 1 + m \hfill \cr1 + m > 4 \hfill \cr}  \right. \hfill \cr}  \right.\cr& \Leftrightarrow \left[ \matrix{\left\{ \matrix{x = 1 + m \hfill \cr m <  - 3 \hfill \cr}  \right. \hfill \cr\left\{ \matrix{x = 1 + m \hfill \cr m > 3 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{x = 1 + m \hfill \cr\left| m \right| > 3 \hfill \cr}  \right. \cr} \)

Kết luận

+ Với \(\left| m \right| \le 3\) thì phương trình đã cho vô nghiệm.

+ Với \(\left| m \right| > 3\) thì phương trình đã cho có nghiệm là \(x = 1 + m.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved