Đề bài
Cho hàm số
\(f\left( x \right) = {1 \over {\left| {\cos x} \right|}}\left( {x \ne {\pi \over 2} + k\pi ;k \in Z} \right)\)
Chứng minh rằng
\(f'\left( x \right) = {{\tan x} \over {\left| {\cos x} \right|}}\)
Lời giải chi tiết
Vì \(x \ne {\pi \over 2} + k\pi ,k \in Z\) nên \(\cos x \ne 0.\) Xét hai trường hợp
+ Nếu \(\cos x > 0\) thì
\(f\left( x \right) = {1 \over {\left| {\cos x} \right|}} = {1 \over {\cos x}}\)
Suy ra
\(f'\left( x \right) = - {{\left( { - \sin x} \right)} \over {{{\cos }^2}x}} = {{\sin x} \over {{{\cos }^2}x}} = {1 \over {\cos x}}.\tan x = {{\tan x} \over {\left| {\cos x} \right|}}\,\,\,\left( 1 \right)\)
Nếu \(\cos x < 0\) thì
\(f\left( x \right) = {1 \over {\left| {\cos x} \right|}} = -{1 \over {\cos x}}\)
Suy ra
\(f'\left( x \right) = - {{ - \sin x} \over {{{\cos }^2}x}} = {1 \over {\cos x}}.\tan x = {{\tan x} \over {\left| {\cos x} \right|}}\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(f'\left( x \right) = {{\tan x} \over {\left| {\cos x} \right|}}\,\left( {x \ne {\pi \over 2} + k\pi ,k \in Z} \right).\)
Bài 5. Kiến thức phổ thông về phòng không nhân dân
Chương II. Sóng
Bài 8. Lợi dụng địa hình, địa vật
CHƯƠNG 5: HIDROCACBON NO
Câu hỏi tự luyện Địa 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11