ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Câu 5.48 trang 186 sách bài tập Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Chứng minh rằng nếu \(P\left( x \right)\) là một đa thức bậc ba và \(\alpha \) là một số thực bất kì ta có

\(P\left( {x + \alpha } \right) = P\left( \alpha  \right) + xP'\left( \alpha  \right) + {{{x^2}} \over 2}P"\left( \alpha  \right)) \)

\(+ {{{x^3}} \over 6}P'''\left( \alpha  \right),\) \(\left( {\forall x \in R} \right)\)

Lời giải chi tiết:

Ta viết đa thức bậc ba \(P\left( x \right)\) dưới dạng

                                    \(P\left( x \right) = {a_0}{x^3} + {a_1}{x^2} + {a_2}x + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{a_0} \ne 0} \right)\)

Ta có

\(\eqalign{& P'\left( x \right) = 3{a_0}{x^2} + 2{a_1}x + {a_2}  \cr& P''\left( x \right) = 6{a_0}x + 2{a_1}  \cr& P'''\left( x \right) = 6{a_0}. \cr} \)

Vậy

\(\eqalign{& {{{x^3}} \over 6}P'''\left( \alpha  \right) + {{{x^2}} \over 2}P''\left( \alpha  \right) + xP'\left( \alpha  \right) + P\left( \alpha  \right)  \cr&  = {a_0}{x^3} + \left( {3{a_0}\alpha  + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2}  + 2{a_1}\alpha  + {a_2}} \right)x\cr& + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha  + {a_3}\,\,\,\,\,\,\left( 1 \right) \cr} \)

Mặt khác ta có

\(\eqalign{& P\left( {x + \alpha } \right) = {a_0}{\left( {x + \alpha } \right)^3} + {a_1}{\left( {x + \alpha } \right)^2} \cr&  \;\;\; + {a_2}\left( {x + \alpha } \right) + {a_3}  \cr&  = {a_0}\left( {{x^3} + 3\alpha {x^2} + 3{\alpha ^2}x + {\alpha ^3}} \right) \cr&\;\;\; + {a_1}\left( {{x^2} + 2\alpha x + {\alpha ^2}} \right) + {a_2}\left( {x + \alpha } \right) + {a_3}  \cr&  = {a_0}{x^3} + \left( {3{a_0}\alpha  + {a_1}} \right){x^2} + \left( {3{a_0}{\alpha ^2} + 2{a_1}\alpha  + {a_2}} \right)x \cr&\;\;\;  + {a_0}{\alpha ^3} + {a_1}{\alpha ^2} + {a_2}\alpha  + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \)

So sánh (1) và (2) , suy ra điều phải chứng minh.

LG b

LG b

Xác định đa thức \(P\left( x \right)\) bậc ba biết \(P\left( 0 \right) = P'\left( 0 \right) = P"\left( 0 \right)=P'''\left( 0 \right)\,\, = 1\)

Lời giải chi tiết:

Khi \(\alpha  = 0,\) ta được

\(P\left( x \right) = P\left( 0 \right) + xP'\left( 0 \right) + {{{x^2}} \over 2}P''\left( 0 \right) + {{{x^3}} \over 6}P'''\left( 0 \right).\)

Vì \(P\left( 0 \right) = P'\left( 0 \right) = P''\left( 0 \right) = P'''\left( 0 \right) = 1\)

Nên đa thức tìm là \(P\left( x \right) = 1 + x + {{{x^2}} \over 2} + {{{x^3}} \over 6}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved