Gọi (P) và (P’) lần lượt là đồ thị của hai hàm số
LG a
LG a
Vẽ các đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ.
Lời giải chi tiết:
LG b
LG b
Viết phương trình của đường thẳng (d) là tiếp tuyến của (P) để tiếp điểm A đồng thời cũng là tiếp tuyến của (P’) tại tiếp điểm B (đường thẳng (d) nếu có, được gọi là tiếp tuyến chung của (P) và (P’).
Lời giải chi tiết:
Gọi đường thẳng \(y = mx + p\,\,\,\left( d \right)\) là tiếp tuyến của đồ thị hàm số \(y = f\left( x \right) = - {x^2} - 2x + 1\) tại điểm \(A\left( {a;f\left( a \right)} \right),\) đồng thời là tiếp tuyến của đồ thị hàm số \(y = g\left( x \right) = {x^2} - 2x + 3\) tại điểm \(B\left( {b;g\left( b \right)} \right).\) Nếu thế thì ta phải có
\(\left( I \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \matrix{ f'\left( a \right) = g'\left( b \right) = m\,\,\,\,\,\left( 1 \right) \hfill \cr f\left( a \right) = ma + p\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr g\left( b \right) = mb + p\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \hfill \cr} \right.\)
((I) chứng tỏ hệ số góc của tiếp tuyến tại A (đối với (P) và hệ số góc của tiếp tuyến B (đối với (P’)) bằng nhau và bằng m; (2) chứng tỏ đường thẳng (d) đi qua đoạn A; (3) chứng tỏ đường thẳng (d) đi qua B)
Khử m và p ở hệ phương trình (1), ta được
Thế vào (1) ta được
- Với \(a = - 1;b = 1\) thì \(m = 0\) và \(p = 2,\) suy ra tiếp tuyến chung phải tìm là \(y = 2\left( {{d_1}} \right)\)
- Với \(a = 1;b = - 1\) thì \(m = - 4\) và \(p = 2,\) suy ra tiếp tuyến chung phải tìm là \(y = - 4x + 2\left( {{d_2}} \right)\)
Chủ đề 4: Kĩ thuật bỏ nhỏ
Chủ đề 2. Sóng
Chủ đề 2: Kĩ thuật di chuyển và chuyền bóng
Các bài văn mẫu về Nghị luận xã hội lớp 11
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11