Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tứ diện ABCD có \(BC = B{\rm{D}} = AC = A{\rm{D}};AB = a,C{\rm{D}} = a\sqrt 3 \). Gọi I và J lần lượt là trung điểm của AB và CD, IJ = a.
a) Chứng minh rằng IJ là đường vuông góc chung của AB và CD.
b) Tính khoảng cách từ điểm cách đều bốn đỉnh A, B, C, D đến mỗi đỉnh đó.
Lời giải chi tiết
a)
\(\eqalign{
& \Delta BCD = \Delta ACD(c.c.c) \cr
& \Rightarrow BJ =AJ \cr} \)
Do đó \(\Delta ABJ\) cân tại J, suy ra \(IJ \bot AB\)
Chứng minh tương tự: \(IJ \bot CD\)
Vậy IJ là đường vuông góc chung của AB và CD.
b) Gọi O là điểm cách đều các đỉnh A, B, C, D thì O thuộc đường thẳng IJ. Khi đó OA = OD. Điều này xảy ra khi và chỉ khi \(I{A^2} + O{I^2} = O{J^2} + J{D^2}\), đặt \(I{\rm{O}} = x\) ta có đẳng thức
\(\eqalign{ & {{{a^2}} \over 4} + {x^2} = {\left( {a - x} \right)^2} + {\left( {{{a\sqrt 3 } \over 2}} \right)^2} \cr & \Leftrightarrow x = {3 \over 4}a \cr} \)
Như vậy khoảng cách từ điểm O đến mỗi đỉnh của tứ diện ABCD bằng
\(\sqrt {{{{a^2}} \over 4} + {{9{{\rm{a}}^2}} \over {16}}} = {{a\sqrt {13} } \over 4}\).
Chương 6. Chương trình con và lập trình có cấu trúc
Unit 2: Get well
Unit 10: Travel
Chủ đề 2: Kĩ thuật chuyền bóng - nhảy dừng bắt bóng, xoay chân trụ - nhảy ném rổ
CHƯƠNG VII - MẮT. CÁC DỤNG CỤ QUANG
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11