Đề bài
Với mỗi số nguyên dương n, đặt \({u_n} = {7.2^{2n - 2}} + {3^{2n - 1}}\) (1) .Chứng minh rằng với mọi số nguyên dương n, ta luôn có un chia hết cho 5.
Phương pháp giải - Xem chi tiết
Sử dụng phương pháp quy nạp toán học:
+ Chứng minh (1) đúng với \(n=1\).
+ Giả sử (1) đúng với \(n=k\).
+ Chứng minh (1) đúng với \(n=k+1\).
Lời giải chi tiết
+) Với \(n = 1\), ta có:
\({u_1} = {7.2^{2.1 - 2}} + {3^{2.1 - 1}} \)\(= 7 + 3 = 10\vdots\) \( 5\)
Suy ra (1) đúng khi \(n = 1\).
+) Giả sử (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là:
\({u_k} = [{7.2^{2k - 2}} + {3^{2k - 1}}]\) \(\vdots\) \( 5\)
+) Ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\)
Thật vậy, ta có :
\(\eqalign{
& {u_{k + 1}} = {7.2^{2\left( {k + 1} \right) - 2}} + {3^{2\left( {k + 1} \right) - 1}} \cr
& = {7.2^{2k}} + {3^{2k + 1}} \cr&= {7.2^{2k - 2 + 2}} + {3^{2k - 1 + 2}}\cr&= {4.7.2^{2k - 2}} + {9.3^{2k - 1}} \cr
& ={4.7.2^{2k - 2}} + {4.3^{2k - 1}} + {5.3^{2k - 1}}\cr&= 4\left( {{{7.2}^{2k - 2}} + {3^{2k - 1}}} \right) + 5.{3^{2k - 1}} \cr
& = 4.{u_k} + {5.3^{2k - 1}}\,\, \cr} \)
Vì \(u_k \) \(⋮\) \(5\) (theo giả thiết qui nạp), nên suy ra \({u_{k + 1}}\) chia hết cho \(5\) ta được điều cần chứng minh.
Chương 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
PHẦN BA. LỊCH SỬ VIỆT NAM (1858 - 1918)
D
Chủ đề 3: Phối hợp động tác giả dẫn bóng và ném rổ
Chương 2. Cảm ứng ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11