ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO

Câu 6 trang 100 SGK Đại số và Giải tích 11 Nâng cao

Đề bài

Với mỗi số nguyên dương n, đặt \({u_n} = {7.2^{2n - 2}} + {3^{2n - 1}}\)   (1) .Chứng minh rằng với mọi số nguyên dương n, ta luôn có un chia hết cho 5.

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp quy nạp toán học:

+ Chứng minh (1) đúng với \(n=1\).

+ Giả sử (1) đúng với \(n=k\).

+ Chứng minh (1) đúng với \(n=k+1\).

Lời giải chi tiết

+) Với \(n = 1\), ta có:

\({u_1} = {7.2^{2.1 - 2}} + {3^{2.1 - 1}} \)\(= 7 + 3 = 10\vdots\) \( 5\)

Suy ra (1) đúng khi \(n = 1\).

+) Giả sử (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là:

\({u_k} = [{7.2^{2k - 2}} + {3^{2k - 1}}]\) \(\vdots\) \( 5\)

+) Ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\)

Thật vậy, ta có :

\(\eqalign{
& {u_{k + 1}} = {7.2^{2\left( {k + 1} \right) - 2}} + {3^{2\left( {k + 1} \right) - 1}} \cr 
& = {7.2^{2k}} + {3^{2k + 1}} \cr&= {7.2^{2k - 2 + 2}} + {3^{2k - 1 + 2}}\cr&= {4.7.2^{2k - 2}} + {9.3^{2k - 1}} \cr 
& ={4.7.2^{2k - 2}} + {4.3^{2k - 1}} + {5.3^{2k - 1}}\cr&= 4\left( {{{7.2}^{2k - 2}} + {3^{2k - 1}}} \right) + 5.{3^{2k - 1}} \cr 
& = 4.{u_k} + {5.3^{2k - 1}}\,\, \cr} \)

Vì \(u_k \) \(⋮\) \(5\) (theo giả thiết qui nạp), nên suy ra \({u_{k + 1}}\) chia hết cho \(5\) ta được điều cần chứng minh.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved