Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hai đường thẳng d và d’ chéo nhau.Trên d đặt hai đoạn thẳng liên tiếp bằng nhau AB và BC (B ở giữa A và C); trên d’ đặt hai đoạn thẳng liên tiếp cũng bằng nhau A’B’ và B’C’ (B’ ở giữa A’ và C’). Chứng minh rằng AA’ + CC’ > 2 BB’.
Lời giải chi tiết
Gọi (P) là mặt phẳng đi qua AA’ và song song với BB’. Theo định lí Ta-lét, ta cũng có CC’ // mp(P). Xét phép chiếu song song lên mp(P) theo phương chiếu d, ta được hình chiếu của A’, B’, C’ tương ứng là A’, B1, C1. Khi đó ba điểm A’, B1, C1 thẳng hàng. Ta có C’C1 // CA và vì CC’ // mp(P) nên giao tuyến AC1 của mp(CC’C1A) với mp(P) song song với CC’. Do đó tứ giác CC’C1A là hình bình hành, nên AC1 = CC’. Tương tự như vậy, ta cũng chứng minh được AB1 = BB’. Ta phải chứng minh AA’ +AC1 > 2AB1.
Thật vậy, vì B’ là trung điểm của A’C’ nên B1 là trung điểm của cạnh A’C1 của tam giác AA’C1. Từ đó dễ thấy tổng của hai cạnh AA’ và AC1 trong tam giác AA’C1 lớn hơn hai lần trung tuyến ứng với cạnh thứ ba.
Chương 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Chuyên đề 3. Một số vấn đề về pháp luật dân sự
SOẠN VĂN 11 TẬP 1
SBT Ngữ văn 11 - Kết nối tri thức tập 1
Unit 12: The Asian Games - Đại hội thể thao Châu Á
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11