Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của CD và CC’.
a) Xác định đường thẳng qua M cắt AN và cắt A’B.
b) Gọi I, J lần lượt là giao điểm của \(\Delta \) với AN và A’B. Hãy tìm tỉ số \({{IM} \over {{\rm{IJ}}}}\).
Lời giải chi tiết
a) Giả sử đã dựng được đường thẳng \(\Delta \) cần tìm cắt cả AN và BA’. Gọi I, J lần lượt là giao điểm của \(\Delta \) với AN và BA’.
Xét phép chiếu song song lên mp(ABCD) theo phương chiếu A’B. Khi đó ba điểm I, J, M lần lượt có hình chiếu là B, I’ và M. Do đó ba điểm B, I’, M thẳng hàng. Gọi N’ là hình chiếu của N thì AN’ là hình chiếu của AN. Vì I thuộc AN nên I’ thuộc AN’. Vậy I’ là giao điểm của BM và AN’.
Từ phân tích ở trên ta có thể dựng đường thẳng \(\Delta \) theo các bước sau đây:
- Lấy giao điểm I’ của AN’ và BM.
- Trong mp(ANN’) dựng II’ // NN’ (đã có NN’ // CD’) cắt AN tại I.
- Vẽ đường thẳng MI, đó là đường thẳng \(\Delta \) cần tìm.
Dễ chứng minh được, đường thẳng \(\Delta \) nói trên cắt BA’.
b) Dễ thấy: MC = CN’
suy ra: MN’ = CD = AB.
Do đó I’ là trung điểm của BM.
Mặt khác II’ // JB, nên II’ là đường trung bình của tam giác MBJ, suy ra:
\(IM = {\rm{IJ}} \Rightarrow {{IM} \over {IJ}} = 1\)
Unit 4: ASEAN and Viet Nam
Chương II. Sóng
Chuyên đề 2. Một số vấn đề về du lịch thế giới
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Lịch sử lớp 11
SƠ KẾT LỊCH SỬ VIỆT NAM (1858 - 1918)
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11