Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
a) Hai mặt phẳng ABC và ABD của hình tứ diện ABCD là những tam giác có diện tích bằng nhau. Chứng minh rằng đường vuông góc chung của AB và CD đi qua trung điểm của CD.
b) Bốn mặt của hình tứ diện ABCD có diện tích bằng nhau. Chứng minh rằng các cặp đối diện của tứ diện bằng nhau, nghĩa là BC = AD, AC = BD, AB = CD.
Lời giải chi tiết
a)
Vì \({S_{CAB}} = {S_{DAB}}\) nên \(C{B_1} = D{A_1}\) (CB1, DA1 tương ứng là đường cao của các tam giác CAB và DAB). Từ đó \(C{A_1} = D{B_1}\).
Nếu A1 \( \ne \) B1
Xét tứ diện A1B1CD có \({A_1}C = {B_1}D,C{B_1} = D{A_1}\) nên đường vuông góc chung của A1B1, CD là đường thẳng nối trung điểm của A1B1 và CD, hay đường vuông góc chung của AB và CD đi qua trung điểm của CD.
Nếu A1 ≡ B1 thì kết quả là hiển nhiên.
Cách 2.
Kẻ các đường cao CB1, DA1 tương ứng của tam giác CAB và DAB. Xét mp(P) vuông góc với AB. Gọi IJ là đường vuông góc với AB. Gọi IJ là đường vuông góc chung của AB và CD thì IJ // (P), CB1 // (P) và DA1 // (P).
Chiếu tứ diện đã cho lên (P) thì các điểm A, B, A1, B1, I cùng có hình chiếu là E. Các điểm C, J, D lần lượt có hình chiếu là C’, J’, D’. Dễ thấy J’ thuộc \(C'D',EC' = C{B_1},E{\rm{D}}' = {A_1}D\) từ đó EC’ = ED’.
Mặt khác do \(IJ \bot AB\) và \(IJ \bot CD\) nên suy ra \(EJ' \bot C'D'\).
Như vậy C’ED’ là tam giác cân tại E và nhận EJ’ là đường cao, từ đó J’C’ = J’D’.
Do vậy JC = JC, tức là đường vuông góc chung của AB, CD đi qua trung điểm của CD.
b) Vì bốn mặt của tứ diện ABCD có diện tích bằng nhau nên \({S_{CAB}} = {S_{DAB}}\) và \({S_{BC{\rm{D}}}} = {S_{AC{\rm{D}}}}\). Do đó theo câu a) thì đường vuông góc chung của AB và CD là đường thẳng IJ, trong đó I và J lần lượt là trung điểm của AB và CD. Khi đó AC = BD, BC = AD.
Tương tự như trên ta có AC = BD và AB = CD. Vậy ABCD là tứ diện có các cặp cạnh đối diện bằng nhau, tức là AB = CD, AC = BD, AD = BC.
Chương 8. Dẫn xuất halogen - ancol - phenol
Unit 3: Cities of the future
CHƯƠNG IV- TỪ TRƯỜNG
Chương 3: Đại cương hóa học hữu cơ
Chuyên đề 3: Vệ sinh an toàn thực phẩm
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11