Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình lập phương ABCD.A’B’C’D’ cạnh a.
a) Tính góc và khoảng cách giữa hai đường thẳng AC’ và A’B.
b) Gọi M, N, P lần lượt là các điểm thuộc các cạnh A’B’, BC, DD’ sao cho A’M = BN = DP. Chứng minh rằng trọng tâm tam giác MNP luôn thuộc đường thẳng cố định khi M, N, P thay đổi.
Lời giải chi tiết
a) Góc giữa AC’ và A’B bằng 90°. Vì AC’ vuông góc với (A’BD) tại trọng tâm G của tam giác A’BD và A’BD là tam giác đều cạnh \(a\sqrt 2 \) nên
\(d\left( {AC';A'B} \right) = GI = {{a\sqrt 6 } \over 6}.\)
b) Đặt \(A'M = BN = DP = x\) thì
\(\eqalign{ & A{N^2} = {a^2} + {x^2} \cr & A{P^2} = {a^2} + {x^2} \cr & A{M^2} = {a^2} + {x^2} \cr & \Rightarrow AM = AN = AP \cr} \)
Mặt khác
\(N{P^2} = N{C^2} + C{{\rm{D}}^2} + D{P^2}\)
\(= {\left( {a - x} \right)^2} + {a^2} + {x^2}\)
\(N{M^2} = N{B^2} + BB{'^2} + B'{M^2}\)
\(= {x^2} + {a^2} + {\left( {a - x} \right)^2} \)
Tương tự, ta có MN = NP = PM.
Do đó A.MNP là hình chóp đều. Khi ấy đường thẳng nối A với trọng tâm tam giác MNP sẽ vuông góc với mp(MNP). Tương tự như trên ta cũng có đường thẳng nối C’ với trọng tâm của tam giác MNP sẽ vuông góc với mp(MNP). Vậy trọng tâm tam giác MNP luôn thuộc đường thẳng cố định AC’.
Tổng hợp từ vựng lớp 11 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 11
CHUYÊN ĐỀ 1. LỊCH SỬ NGHỆ THUẬT TRUYỀN THỐNG VIỆT NAM
Unit 2: Leisure time
Bài 10. Kĩ thuật sử dụng lựu đạn
Unit 6. World heritages
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11