Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABCD có đáy là hình thang \(\left( {AB//CD,\,AB > CD} \right).\) Gọi E là giao điểm của AD và BC; M là trung điểm của AB; G là trọng tâm của tam giác ECD.
a) Chứng minh rằng các điểm S, E, M, G cũng thuộc một mặt phẳng và mặt phẳng này cắt cả hai mặt phẳng (SAC) và (SBD) theo cùng một đường thẳng \(\Delta \).
b) Gọi \({C_1}\) và \({D_1}\) là hai điểm lần lượt thuộc các cạnh SC, SD sao cho \(A{D_1}\) và \(B{C_1}\) cắt nhau tại K. Chứng minh các điểm S, K, E thẳng hàng và giao điểm \({O_1}\) của \(A{C_1}\) với \(B{D_1}\) thuộc \(\Delta \).
Lời giải chi tiết
a) Gọi N là giao điểm của EM và CD. Do M là trung điểm của AB và AB // CD nên N cũng là trung điểm của CD; suy ra G thuộc EM, hay \(G \in mp\left( {SEM} \right),\) tức là các điểm S, E, M , G thuộc mp(SEM).
Gọi O là giao điểm của AC và BD thì đường thẳng MN đi qua O. Vậy ba mặt phẳng (SEM), (SAC) và (SBD) đều có chung hai điểm S và O nên SO chính là giao tuyến chung \(\Delta \) của ba mặt phẳng trên.
b) Vì K thuộc \(A{D_1}\) và \(B{C_1}\) nên tương ứng K thuộc mp(SAD) và mp(SBC). Do đó K nằm trên giao tuyến SE của hai mặt phẳng (SAD) và (SBC). Vậy ba điểm S, E, K thẳng hàng.
Điểm \({O_1}\) nằm trên \(A{C_1}\) và \(B{D_1}\) nên \({O_1}\) phải thuộc (SAC) và (SBD) (do \(A{C_1} \subset \left( {SAC} \right),\,B{D_1} \subset \left( {SBD} \right)\)). Từ đó, suy ra \({O_1}\) phải thuộc giao tuyến \(\Delta \) của hai mặt phẳng (SAC) và (SBD).
Unit 1: Generations
Chủ nghĩa yêu nước trong văn thơ Nguyễn Đình Chiểu
Chương 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
Chuyên đề 2. Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Vật lí lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11