Xét tính chẵn – lẻ của mỗi hàm số sau :
a. \(y = \cos \left( {x - {\pi \over 4}} \right)\)
b. \(y = \tan \left| x \right|\)
c. \(y = \tan x - \sin 2x.\)
LG a
LG a
\(y = \cos \left( {x - {\pi \over 4}} \right)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& f\left( x \right) = \cos \left( {x - {\pi \over 4}} \right)\cr&f\left( {{\pi \over 4}} \right) = 1,f\left( { - {\pi \over 4}} \right) = 0 \cr
& f\left( { - {\pi \over 4}} \right) \ne f\left( {{\pi \over 4}} \right)\cr& \text{và }f\left( { - {\pi \over 4}} \right) \ne - f\left( {{\pi \over 4}} \right) \cr} \)
Nên \(y = \cos \left( {x - {\pi \over 4}} \right)\) không phải là hàm số chẵn cũng không phải là hàm số lẻ.
LG b
LG b
\(y = \tan \left| x \right|\)
Lời giải chi tiết:
\(f(x) = \tan|x|\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in \mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan |-x| = \tan |x| = f(x)\)
Do đó \(y = \tan |x|\) là hàm số chẵn.
LG c
LG c
\(y = \tan x - \sin 2x.\)
Lời giải chi tiết:
\(f(x) = \tan x – \sin 2x\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in\mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan(-x) – \sin(-2x)\)
\(= -\tan x + \sin 2x = -(\tan x – \sin 2x)\)
\(= -f(x)\)
Do đó \(y = \tan x – \sin 2x\) là hàm số lẻ.
Chủ đề 3: Kĩ thuật bỏ nhỏ và chiến thuật phân chia khu vực đánh cầu
Unit 1: Health & Healthy lifestyle
Chủ đề 2. Công nghệ giống vật nuôi
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Phần một. CÔNG DÂN VỚI KINH TẾ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11