Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cắt hình lập phương bằng một mặt phẳng (P) đi qua một đường chéo của hình lập phương. Phải chọn (P) như thế nào để thiết diện thu được có diện tích nhỏ nhất.
Lời giải chi tiết
Xét (P) là mặt phẳng chứa một đường chéo, chẳng hạn đường chéo BD’ của hình lập phương.
Nếu (P) chứa D’A’ thì thiết diện có diện tích là \({a^2}\sqrt 2 .\)
Tương tự, nếu (P) chứa D’C’ hoặc D’D thì thiết diện cũng có diện tích là \({a^2}\sqrt 2 \).
Ta xét (P) cắt AA’ tại điểm M. Gọi O là tâm hình lập phương thì MO cắt CC’ tạo N. Do đó thiết diện của hình lập phương khi cắt bởi (P) là BMD’N, đó là hình bình hành.
Ta có \({S_{BM{\rm{D}}'N}} = B{\rm{D}}'.MK = d.MK\)
(d là độ dài đường chéo của hình lập phương).
Vậy \({S_{BM{\rm{D}}'N}}\) nhỏ nhất khi và chỉ khi MK nhỏ nhất, tức MK là đường vuông góc chung của BD’ và AA’. Dễ thấy OM0 là đường vuông góc chung của BD’ và AA’, trong đó M0 là trung điểm của AA’; \(O{M_0} = {{a\sqrt 2 } \over 2}\). Vậy lúc đó:
\({S_{BMD'N}} = a\sqrt 3 .{{a\sqrt 2 } \over 2} = {{{a^2}\sqrt 6 } \over 2}\)
Chú ý. Khi (P) cắt A’B' hoặc B’C’ thì cách giải quyết câu toán cũng như trên và ta có diện tích thiết diện nhỏ nhất trong trường hợp đó cũng là \({{{a^2}\sqrt 6 } \over 2}\).
Dễ thấy \({{{a^2}\sqrt 6 } \over 2} < {a^2}\sqrt 2 .\)
Vậy nếu (P) qua đường chéo BD’ và qua trung điểm một cạnh của hình lập phương không đi qua B và D’, thì diện tích thiết diện nhỏ nhất và có giá trị bằng \({{{a^2}\sqrt 6 } \over 2}\).
Unit 5: Technology
Phần 4. Sinh học cơ thể
Unit 4: The Body
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
CHƯƠNG VII - MẮT. CÁC DỤNG CỤ QUANG
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11