Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tứ diện ABCD. Gọi \({A_1},{B_1},{C_1},{D_1}\) là các điểm lần lượt thuộc các đường thẳng AB, BC, CD, DA sao cho \(\overrightarrow {{A_1}A} = k\overrightarrow {{A_1}B} ,\overrightarrow {{B_1}B} = k\overrightarrow {{B_1}C} \) , \(\overrightarrow {{C_1}C} = k\overrightarrow {{C_1}D} ,\overrightarrow {{D_1}D} = k\overrightarrow {{D_1}A} \). Với giá trị bào của k thì bốn điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng?
Lời giải chi tiết
Cách 1.
Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \) thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng.
Các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng khi và chỉ khi có các số m, n để
\(\overrightarrow {{D_1}{B_1}} = m\overrightarrow {{D_1}{A_1}} + n\overrightarrow {{D_1}{C_1}} \,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Từ hệ thức \(\overrightarrow {{B_1}B} = k\overrightarrow {{B_1}C} \), ta có
\(\overrightarrow {{D_1}{B_1}} = {{\overrightarrow {{D_1}B} - k\overrightarrow {{D_1}C} } \over {1 - k}}\)
hay
\(\eqalign{ & \overrightarrow {{D_1}{B_1}} = {{\overrightarrow {{D_1}D} + \overrightarrow {DB} - k\left( {\overrightarrow {{D_1}D} + \overrightarrow {DC} } \right)} \over {1 - k}} \cr & = \overrightarrow {{D_1}D} + {1 \over {1 - k}}\overrightarrow b - {k \over {1 - k}}\overrightarrow c \cr} \)
Mặt khác
\(\eqalign{ & \overrightarrow {{D_1}D} = k\overrightarrow {{D_1}A} = k\left( {\overrightarrow {{D_1}D} + \overrightarrow {DA} } \right) \cr & \Rightarrow \overrightarrow {{D_1}D} = {k \over {1 - k}}\overrightarrow a \cr} \)
Vậy \(\overrightarrow {{D_1}{B_1}} = {k \over {1 - k}}\overrightarrow a + {1 \over {1 - k}}\overrightarrow b - {k \over {1 - k}}\overrightarrow c \).
Tương tự như trên, ta có
\(\eqalign{ & \overrightarrow {{D_1}{A_1}} = {{\overrightarrow {{D_1}A} - k\overrightarrow {{D_1}B} } \over {1 - k}} \cr & = {{\overrightarrow {{D_1}D} + \overrightarrow {DA} - k\left( {\overrightarrow {{D_1}D} + \overrightarrow {DB} } \right)} \over {1 - k}} \cr & = \overrightarrow {{D_1}D} + {1 \over {1 - k}}\overrightarrow a - {k \over {1 - k}}\overrightarrow b \cr} \)
hay
\(\eqalign{ & \overrightarrow {{D_1}{A_1}} = {{k + 1} \over {1 - k}}\overrightarrow a - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr & \overrightarrow {{D_1}{C_1}} = {{\overrightarrow {{D_1}C} - k\overrightarrow {{D_1}D} } \over {1 - k}} \cr & = {{\overrightarrow {{D_1}D} + \overrightarrow {DC} - k\overrightarrow {{D_1}D} } \over {1 - k}} \cr & = \overrightarrow {{D_1}D} + {1 \over {1 - k}}\overrightarrow c \cr} \)
do đó \(\overrightarrow {{D_1}{C_1}} = {k \over {1 - k}}\overrightarrow a + {1 \over {1 - k}}\overrightarrow c .\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)
Từ (1), (2), (3), (4) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc mặt phẳng khi và chỉ khi
\(k\overrightarrow a + \overrightarrow b - k\overrightarrow c \)
\(= \left( {mk + nk + m} \right)\overrightarrow a - mk\overrightarrow b + n\overrightarrow c \)
Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên đẳng thức trên xảy ra khi và chỉ khi có các số m, n để
\(\left\{ \matrix{ k = mk + nk + m \hfill \cr 1 = - mk \hfill \cr - k = n \hfill \cr} \right.\)
Điều đó tương đương với \(k = - 1 - {k^2} - {1 \over k}\) hay \({k^3} + {k^2} + k + 1 = 0\) hay k = -1.
Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng.
Cách 2.
Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \). Tìm k để các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng tương đương với việc tìm k để có biểu diễn
\(\overrightarrow {D{A_1}} = x\overrightarrow {D{B_1}} + y\overrightarrow {D{C_1}} + z\overrightarrow {{\rm{D}}{{\rm{D}}_1}} \)
với x + y + z = 1 (a)
Từ hệ thức \(\overrightarrow {{A_1}A} = k\overrightarrow {{A_1}B} \) ta có
\(\eqalign{ & \overrightarrow {D{A_1}} = {{\overrightarrow {DA} - k\overrightarrow {DB} } \over {1 - k}} \cr & = {1 \over {1 - k}}\overrightarrow a - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \)
Tương tự như trên, ta cũng có
\(\overrightarrow {D{B_1}} = {1 \over {1 - k}}\overrightarrow b - {k \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Mặt khác từ \(\overrightarrow {{C_1}C} = k\overrightarrow {{C_1}D} \) ta có
\(\eqalign{ & \overrightarrow {{C_1}D} + \overrightarrow {DC} = k\overrightarrow {{C_1}D} \cr & \Leftrightarrow \overrightarrow {D{C_1}} = {1 \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \)
Tương tự từ \(\overrightarrow {{D_1}D} = k\overrightarrow {{D_1}A} \), ta cũng có
\(\overrightarrow {{D_1}D} = {k \over {1 - k}}\overrightarrow a \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)
Từ (1), (2), (3), (4), ta suy ra
\(\overrightarrow {D{A_1}} = - {1 \over k}\overrightarrow {{\rm{D}}{{\rm{D}}_1}} - k\overrightarrow {D{B_1}} - {k^2}\overrightarrow {D{C_1}} \,\,\,\,\,\,\,\,\,\,\,\left( b \right)\)
Từ (a) và (b) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng khi và chỉ khi:
\(\eqalign{ & - {1 \over k} - k - {k^2} = 1 \cr & \Leftrightarrow {k^3} + {k^2} + k + 1 = 0 \cr & \Leftrightarrow k = - 1 \cr} \)
Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng.
Chương 4: Dòng điện không đổi
SBT Ngữ văn 11 - Chân trời sáng tạo tập 2
Chương 4: Hydrocarbon
Chương 1: Cân bằng hóa học
Chủ đề 4. Dòng điện. Mạch điện
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11